
Jutge.org
The Virtual Learning Environment for Computer Programming

Mètode de la classe BinaryTree amb un ABC que genera el camí en-
tre l’arrel i l’element indicat U64796_ca

Implementa un nou mètode RECURSIU de la classe BinaryTree que genera una llista amb
el camí entre l’arrel i l’element indicat. Aquest arbre binari emmagatzema un Arbre Binari
de Cerca (ABC, o BST en anglès).
Entre els fitxers que s’adjunten en aquest exercici, trobaràs BinaryTree.old.hpp, a on hi
ha una implementació de la classe genèrica BinaryTree. En primer lloc, hauràs de fer:

cp BinaryTree.old.hpp BinaryTree.hpp

A continuació si obres el fitxer BinaryTree.hpp al final del mateix trobaràs el mètode que
has d’implementar:

// Pre: p.i. emmagatzema un arbre binari de cerca sense elements repetits,
// res és una llista buida
// Post: Torna a res el camí entre l'arrel i x. Si x no es troba en el p.i.
// llavors res serà buit.
template <typename T>
void BinaryTree<T>::route_bst(const T &x, list<T> &res) const {
}

IMPORTANT: No toquis la resta de la implementació de la classe, excepte si necessites afegir
algun mètode auxiliar o atribut a la part privada.
També pots trobar entre els fitxers que s’adjunten a l’exercici el fitxer program.cpp (pro-
grama principal) i Makefile per a compilar i generar l’executable. El programa principal que
t’oferim ja s’encarrega de llegir els arbres binaris i fer les crides al mètode indicat. Només cal
que implementis el mètode route_bst.
Per a pujar la teva solució, has de crear el fitxer solution.tar així:

tar cf solution.tar BinaryTree.hpp

Observació
Recorda que si crees funcions auxiliars, has d’afegir-hi les corresponents Precondició (Pre)
i Postcondició (Post). Has de trobar una solució RECURSIVA i eficient del problema. En
particular, no hi hauria d’haver cap bucle en cap de les funcions/accions que implementis.
En les crides recursives inclou la hipòtesi d’inducció (HI) i la funció de fita (FF).

Entrada
Una seqüència d’arbres binaris de cerca.



Sortida
Per a cada arbre binari de cerca s’escriurà el resultat del mètode route_bst.
El programa principal que t’oferim ja s’encarrega de llegir la seqüència d’arbres binaris i
fer les crides als corresponents al mètode de BinaryTree que se’t demana d’implementar.
Només cal que facis les modificacions abans esmentades dins el fitxer BinaryTree.hpp.
Per més detalls de com és l’entrada i la sortida consulta els jocs de proves públics.

Exemple d’entrada 1
0 ()
1 ()
0 0
1 0
2 0
1 1
2 1
1 2
2 2

5 5(,10)
10 5(,10)
2 5(,10)
7 5(,10)
17 5(,10)

1 5(1,)
5 5(1,)
0 5(1,)
3 5(1,)
7 5(1,)

5 5(,10(7,))
10 5(,10(7,))
7 5(,10(7,))
1 5(,10(7,))
8 5(,10(7,))
11 5(,10(7,))

5 5(,20(,30))
20 5(,20(,30))
30 5(,20(,30))
1 5(,20(,30))
10 5(,20(,30))
25 5(,20(,30))
40 5(,20(,30))

7 7(2,15)
2 7(2,15)
15 7(2,15)
1 7(2,15)
3 7(2,15)
10 7(2,15)
20 7(2,15)

4 4(2(,3),12)
2 4(2(,3),12)
3 4(2(,3),12)
12 4(2(,3),12)

1 4(2(,3),12)
5 4(2(,3),12)
13 4(2(,3),12)

10 10(3,14(13,20))
3 10(3,14(13,20))
14 10(3,14(13,20))
13 10(3,14(13,20))
20 10(3,14(13,20))
1 10(3,14(13,20))
4 10(3,14(13,20))
11 10(3,14(13,20))
15 10(3,14(13,20))
21 10(3,14(13,20))
100 10(3,14(13,20))

3 3(1,30(4,52))
1 3(1,30(4,52))
30 3(1,30(4,52))
4 3(1,30(4,52))
52 3(1,30(4,52))
0 3(1,30(4,52))
2 3(1,30(4,52))
5 3(1,30(4,52))
15 3(1,30(4,52))
35 3(1,30(4,52))
55 3(1,30(4,52))

20 20(5(2,12),)
5 20(5(2,12),)
2 20(5(2,12),)
12 20(5(2,12),)
1 20(5(2,12),)
3 20(5(2,12),)
6 20(5(2,12),)
13 20(5(2,12),)
25 20(5(2,12),)

20 20(5(2,12),50(31,52))
5 20(5(2,12),50(31,52))
2 20(5(2,12),50(31,52))
12 20(5(2,12),50(31,52))
50 20(5(2,12),50(31,52))
31 20(5(2,12),50(31,52))
52 20(5(2,12),50(31,52))
1 20(5(2,12),50(31,52))
3 20(5(2,12),50(31,52))
6 20(5(2,12),50(31,52))
13 20(5(2,12),50(31,52))
21 20(5(2,12),50(31,52))
34 20(5(2,12),50(31,52))



51 20(5(2,12),50(31,52))
60 20(5(2,12),50(31,52))
100 20(5(2,12),50(31,52))

20 20(15(12(6(3,),),),)
15 20(15(12(6(3,),),),)
12 20(15(12(6(3,),),),)
6 20(15(12(6(3,),),),)
3 20(15(12(6(3,),),),)
1 20(15(12(6(3,),),),)
5 20(15(12(6(3,),),),)
7 20(15(12(6(3,),),),)
11 20(15(12(6(3,),),),)
19 20(15(12(6(3,),),),)
25 20(15(12(6(3,),),),)

Exemple de sortida 1
0 () --> []
1 () --> []
0 0 --> [0]
1 0 --> []
2 0 --> []
1 1 --> [1]
2 1 --> []
1 2 --> []
2 2 --> [2]
5 5(,10) --> [5]
10 5(,10) --> [5, 10]
2 5(,10) --> []
7 5(,10) --> []
17 5(,10) --> []
1 5(1,) --> [5, 1]
5 5(1,) --> [5]
0 5(1,) --> []
3 5(1,) --> []
7 5(1,) --> []
5 5(,10(7,)) --> [5]
10 5(,10(7,)) --> [5, 10]
7 5(,10(7,)) --> [5, 10, 7]
1 5(,10(7,)) --> []
8 5(,10(7,)) --> []
11 5(,10(7,)) --> []
5 5(,20(,30)) --> [5]
20 5(,20(,30)) --> [5, 20]
30 5(,20(,30)) --> [5, 20, 30]
1 5(,20(,30)) --> []
10 5(,20(,30)) --> []
25 5(,20(,30)) --> []
40 5(,20(,30)) --> []
7 7(2,15) --> [7]
2 7(2,15) --> [7, 2]
15 7(2,15) --> [7, 15]
1 7(2,15) --> []
3 7(2,15) --> []
10 7(2,15) --> []
20 7(2,15) --> []
4 4(2(,3),12) --> [4]
2 4(2(,3),12) --> [4, 2]
3 4(2(,3),12) --> [4, 2, 3]
12 4(2(,3),12) --> [4, 12]
1 4(2(,3),12) --> []
5 4(2(,3),12) --> []
13 4(2(,3),12) --> []
10 10(3,14(13,20)) --> [10]
3 10(3,14(13,20)) --> [10, 3]
14 10(3,14(13,20)) --> [10, 14]
13 10(3,14(13,20)) --> [10, 14, 13]
20 10(3,14(13,20)) --> [10, 14, 20]
1 10(3,14(13,20)) --> []
4 10(3,14(13,20)) --> []
11 10(3,14(13,20)) --> []
15 10(3,14(13,20)) --> []
21 10(3,14(13,20)) --> []
100 10(3,14(13,20)) --> []
3 3(1,30(4,52)) --> [3]
1 3(1,30(4,52)) --> [3, 1]



30 3(1,30(4,52)) --> [3, 30]
4 3(1,30(4,52)) --> [3, 30, 4]
52 3(1,30(4,52)) --> [3, 30, 52]
0 3(1,30(4,52)) --> []
2 3(1,30(4,52)) --> []
5 3(1,30(4,52)) --> []
15 3(1,30(4,52)) --> []
35 3(1,30(4,52)) --> []
55 3(1,30(4,52)) --> []
20 20(5(2,12),) --> [20]
5 20(5(2,12),) --> [20, 5]
2 20(5(2,12),) --> [20, 5, 2]
12 20(5(2,12),) --> [20, 5, 12]
1 20(5(2,12),) --> []
3 20(5(2,12),) --> []
6 20(5(2,12),) --> []
13 20(5(2,12),) --> []
25 20(5(2,12),) --> []
20 20(5(2,12),50(31,52)) --> [20]
5 20(5(2,12),50(31,52)) --> [20, 5]
2 20(5(2,12),50(31,52)) --> [20, 5, 2]
12 20(5(2,12),50(31,52)) --> [20, 5, 12]
50 20(5(2,12),50(31,52)) --> [20, 50]

31 20(5(2,12),50(31,52)) --> [20, 50, 31]
52 20(5(2,12),50(31,52)) --> [20, 50, 52]
1 20(5(2,12),50(31,52)) --> []
3 20(5(2,12),50(31,52)) --> []
6 20(5(2,12),50(31,52)) --> []
13 20(5(2,12),50(31,52)) --> []
21 20(5(2,12),50(31,52)) --> []
34 20(5(2,12),50(31,52)) --> []
51 20(5(2,12),50(31,52)) --> []
60 20(5(2,12),50(31,52)) --> []
100 20(5(2,12),50(31,52)) --> []
20 20(15(12(6(3,),),),) --> [20]
15 20(15(12(6(3,),),),) --> [20, 15]
12 20(15(12(6(3,),),),) --> [20, 15, 12]
6 20(15(12(6(3,),),),) --> [20, 15, 12, 6]
3 20(15(12(6(3,),),),) --> [20, 15, 12, 6, 3]
1 20(15(12(6(3,),),),) --> []
5 20(15(12(6(3,),),),) --> []
7 20(15(12(6(3,),),),) --> []
11 20(15(12(6(3,),),),) --> []
19 20(15(12(6(3,),),),) --> []
25 20(15(12(6(3,),),),) --> []

Informació del problema
Autoria: Bernardino Casas

Generació: 2026-01-25T20:34:54.356Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

