
Jutge.org
The Virtual Learning Environment for Computer Programming

Decodificar Base64 (2) T77863 es

(Este problema utiliza la función char to base64 del problema ”Decodificar Base64 (1)”.)

Se trata de hacer un programa que, dada una secuencia de caracteres en la entrada (uno de
los 64 que representan los dı́gitos de base 64), la decodifique en sus bytes. La decodificación
funciona de la siguiente manera:

1. Primero, para cada grupo de 4 caracteres (o cuarteto) de la entrada c1, c2, c3 y c4,
los transformamos en sus dı́gitos correspondientes d1, d2, d3, d4, usando la función
char_to_base64.

2. Después, con los 4 dı́gitos di reconstruimos el natural x aplicando la fórmula:

x = ((d1 · 64 + d2) · 64 + d3) · 64 + d4

3. A continuación, reinterpretamos x en base 256, y extraemos las cifras, que ahora son 3:
B1, B2, y B3. El proceso es totalmente análogo a extraer las cifras de un número en base
10, pero en base 256. Lo que habremos hecho es calcular los dı́gitos Bi de la fórmula
siguiente:

x = (B1 · 256 + B2) · 256 + B3

(Hay que recordar que el proceso de extracción de las cifras trabajado en PRO1 produce las
cifras al revés, comenzando por B3)

4. Finalmente, mostramos B1, B2 y B3 como números naturales por pantalla, en este or-
den.

La codificación en base 64 siempre tiene un número de caracteres múltiplo de 4, pero justo al
final de la secuencia puede haber ’=’ o ’==’, que nos dice que el número de bytes del último
cuarteto son 2 o 1, y no 3:

Si el último cuarteto tiene algún ’=’ al final:

• Si tiene ’==’: el número de bytes será 1; asignamos d3 = 0 y d4 = 0, decodificamos
según los pasos anteriores, pero solo mostramos B1 por pantalla.

• Si tiene ’=’: el número de bytes es 2; asignamos d4 = 0, decodificamos según los pasos
anteriores, pero solo mostramos B1 y B2 por pantalla.

Entrada

La entrada consiste en varios casos, donde cada caso es una secuencia de caracteres base 64
en la misma lı́nea y con un punto al final.

Salida

La salida debe ser una lı́nea para cada caso con los bytes como números naturales. Antes de
cada byte, incluido el primero, debe haber un espacio.



Observación

• Este problema tiene como centros de interés la corrección y la legibilidad. En partic-
ular, se valorará que el programa utilice funciones para evitar repetición y separar las
diversas tareas.

• Si tenéis la función char_to_base64y el Juez os la ha aceptado, usadla directamente.
Si no, copiad la siguiente definición, (y añadid #include <algorithm>):

int char_to_base64(char c) {

static char _syms[65] =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

"abcdefghijklmnopqrstuvwxyz"

"0123456789+/";

return std::find(_syms, _syms + 64, c) - _syms;

}

Ejemplo de entrada 1

AAAA.

AQEB.

AgIC.

////.

AA==.

AAA=.

AQ==.

AQE=.

ZGRkZA==.

CgAUAB4=.

////AAAA.

Ejemplo de salida 1

0 0 0

1 1 1

2 2 2

255 255 255

0

0 0

1

1 1

100 100 100 100

10 0 20 0 30

255 255 255 0 0 0

Ejemplo de entrada 2

LA==.

Jg==.

lg==.

Sg==.

3Q==.

Mg==.

Rw==.

Ng==.

BQ==.

TA==.

og==.

Ejemplo de salida 2

44

38

150

74

221

50

71

54

5

76

162

Ejemplo de entrada 3

9qE=.

xpM=.

b9M=.

DUk=.

CH0=.

rPA=.

kSk=.

wV8=.

bQg=.

ZvY=.

Ejemplo de salida 3

246 161

198 147

111 211

13 73

8 125

172 240

145 41

193 95

109 8

102 246



Ejemplo de entrada 4

u1Zi.

q6nx.

NJFe.

tjy1.

1Bq2.

/eRh.

q0A/.

2K1L.

ANVh.

eg+n.

Ejemplo de salida 4

187 86 98

171 169 241

52 145 94

182 60 181

212 26 182

253 228 97

171 64 63

216 173 75

0 213 97

122 15 167

Información del problema

Autor : Pau Fernández
Generación : 2025-10-30 16:19:54

© Jutge.org, 2006–2025.
https://jutge.org


