
Jumps in pairs

S97190_en

Given an undirected graph and two vertices s and t , compute the minimum number of jumps needed to go from s to t . Here, we say that a jump between two vertices x and z is possible if there is a vertex y adjacent to both x and z .

Input

Input consists of several graphs. Every case begins with n, m, s and t , followed by m pairs $x y$, with $x \neq y$, indicating an edge between x and y . Suppose $2 \leq n \leq 10^5$, $0 \leq m \leq 5n$, $s \neq t$, that the vertices are numbered between 0 and $n - 1$, and that there are no repeated edges.

Output

For each graph, print the minimum number of jumps to go from s to t . If it is impossible, print "NO".

Observation

Even if a green light is obtained, only $\Theta(n + m)$ solutions will receive the maximum score.

Sample input 1

```
3 2 1 2
1 0 2 1

4 4 3 2
0 1 1 2 2 0 3 0

2 1 0 1
0 1

5 6 0 1
0 1 1 2 1 3 1 4 2 4 3 4
```

Sample output 1

```
NO
1
NO
2
```

Problem information

Author: Salvador Roura

Translator: Salvador Roura

Generation: 2026-01-25T12:49:43.345Z

© Jutge.org, 2006–2026.

<https://jutge.org>