Jutge.org

The Virtual Learning Environment for Computer Programming

Roller coaster
P98985_en
Concurso On-line 1 (OIE08) (2007)
The technicians of a roller coaster are worried, because reading the manual of the ACME cars that have just installed they have found the following sentence: "Danger of derailment: these cars are not prepared to put up with speeds greater than $120 \mathrm{~km} / \mathrm{h}$ with security".
-Hey Paco -ask a technician to the other one-i our roller coaster does not go so fast, does it?
-¿How do you want that I know it, Johnny? I am only the one that tightens the nuts. The only thing that I have is the map of the trajectory that describes the roller coaster. It is given by a polynomial $p(x)$ of degree three in the segment $[a, b]$: the value $p(a)$ is the height of the initial point, and $p(b)$ is the height of the final point. ¿How do you want that I know what speed will go this junk?
Johny remains a while thoughtful.
-I know that the car is stopped in highest point of the roller coaster (that, by the way, it does not have to match with the extremes a or b). And I know also that, as the cars do not have motor and the rails do not do any friction against the wheels (I know it because each morning I oil them personally) happens something that they taught me in the secondary school, something about energy conservation: the gravitational potential energy mgh turns into kinetic energy $\frac{1}{2} m v^{2}$, or something like that. I suppose that we could calculate something...
-Yes, sure that we could -answers Paco- But it is late and in half an hour the Simpsons starts. ¿What do you think if we do it another day?
-OK.
¿Are you able to discover if the installation is safe? Assume that the acceleration of gravity g in the area of the instalation of the roller coaster is $9.81 \mathrm{~ms}^{-2}$.

Input

The input consists of a line with a number n between 1 and 2000, followed by n lines. Each line contains 7 real numbers, separated by a space. The four first numbers $c_{3}, c_{2}, c_{1}, c_{0}$ are the coefficients of the polynomial $p(x)$ of degree three

$$
p(x)=c_{3} x^{3}+c_{2} x^{2}+c_{1} x^{1}+c_{0}
$$

that describes the roller coaster. The following number is the mass of the car, and the other two following numbers are the extremes a and b that describe the initial point and the final point of the roller coaster.
Your program must solve two inputs as the ones described before in a time of 1 second.

Output

Your program must print n lines, one line for each presented case: it must print "No problem" if the instalation is safe (that is, the car never will pass $120 \mathrm{~km} / \mathrm{h}$), and "Crash!" if the instalation is not safe.
In order to avoid rounding problems, we assure you that in all the inputs the maximal speed is less than $119.9 \mathrm{~km} / \mathrm{h}$ or greater than $120.1 \mathrm{~km} / \mathrm{h}$.

Sample input	Sample out
3	No problem
-0.96-0.75 0.03 0.17 611.45-3.4 0.67	Crash!
$0.236-2.14-4.380 .499305 .94-0.89510$	905atsh!
$1.480 .040 .590 .82800 .14-5.280 .76$	

Problem information

Author: Omer Giménez
Translator : Carlos Molina
Generation : 2013-09-02 15:00:48
© Jutge.org, 2006-2013.
http://www.jutge.org

