Jutge.org

The Virtual Learning Environment for Computer Programming

Haskell - Infinite lists
 P98957_en

The goal of this problem is to work the definition of infinite lists. In particular, you are required to define functions that generate infinite lists to:

1. Generate the sequence of ones $[1,1,1,1,1,1,1,1, \ldots]$.
2. Generate the sequence of the natural numbers $[0,1,2,3,4,5,6,7 \ldots]$.
3. Generate the sequence of the integer numbers $[0,1,-1,2,-2,3,-3,4 \ldots]$.
4. Generate the sequence of the triangular numbers: $0,1,3,6,10,15,21,28, \ldots]$.
5. Generate the sequence of the factorial numbers: $[1,1,2,6,24,120,720,5040, \ldots]$.
6. Generate the sequence of the Fibonacci numbers: $[0,1,1,2,3,5,8,13, \ldots]$.
7. Generate the sequence of prime numbers: $[2,3,5,7,11,13,17,19, \ldots]$.
8. Generate the ordered sequence of the Hamming numbers: $[1,2,3,4,5,6,8,9, \ldots]$. The Hamming numbers are those that only have 2,3 and 5 as prime divisors.
9. Generate the look-and-say sequence: $[1,11,21,1211,111221,312211,13112221,1113213211, \ldots]$.
10. Generate the sequences of rows of the Tartaglia triangle (also known as Pascal's triangle): $[[1],[1,1],[1,2,1],[1,3,3,1], \ldots]$.

Specification

Define the following functions:

```
ones:: [Integer]
nats :: [Integer]
ints :: [Integer]
triangulars :: [Integer]
factorials :: [Integer]
fibs :: [Integer]
primes :: [Integer]
hammings :: [Integer]
lookNsay :: [Integer]
tartaglia :: [[Integer]]
```


Observation

In this problem you cannot use infinite enumerations such as [1..], but you are advised to use higer-order functions such as map, scanl, iterate, filter, ...

Scoring

Each function score 10 points.

Sample input

```
take 8 ones
take 8 nats
take 8 ints
take 8 triangulars
take 8 factorials
take 8 fibs
take 8 primes
take 8 hammings
take 8 lookNsay
take 6 tartaglia
```


Sample output

$[1,1,1,1,1,1,1,1]$
$[0,1,2,3,4,5,6,7]$
$[0,1,-1,2,-2,3,-3,4]$
$[0,1,3,6,10,15,21,28]$
$[1,1,2,6,24,120,720,5040]$
$[0,1,1,2,3,5,8,13]$
$[2,3,5,7,11,13,17,19]$
$[1,2,3,4,5,6,8,9]$
$[1,11,21,1211,111221,312211,13112221,1113213211]$
$[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5$,

Problem information

Author: Albert Rubio / Jordi Petit
Translator : Jordi Petit
Generation : 2016-01-20 11:30:38
© Jutge.org, 2006-2016.
http://www.jutge.org

