The goal of this problem is to work the definition of infinite lists. In particular, you are required to define functions that generate infinite lists to:

1. Generate the sequence of ones \([1, 1, 1, 1, 1, 1, 1, 1, \ldots]\).
2. Generate the sequence of the natural numbers \([0, 1, 2, 3, 4, 5, 6, 7, \ldots]\).
3. Generate the sequence of the integer numbers \([0, 1, -1, 2, -2, 3, -3, 4, \ldots]\).
4. Generate the sequence of the triangular numbers: \(0, 1, 3, 6, 10, 15, 21, 28, \ldots\).
5. Generate the sequence of the factorial numbers: \([1, 1, 2, 6, 24, 120, 720, 5040, \ldots]\).
6. Generate the sequence of the Fibonacci numbers: \([0, 1, 1, 2, 3, 5, 8, 13, \ldots]\).
7. Generate the sequence of prime numbers: \([2, 3, 5, 7, 11, 13, 17, 19, \ldots]\).
8. Generate the ordered sequence of the Hamming numbers: \([1, 2, 3, 4, 5, 6, 8, 9, \ldots]\). The Hamming numbers are those that only have 2, 3 and 5 as prime divisors.
9. Generate the look-and-say sequence: \([1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, \ldots]\).
10. Generate the sequences of rows of the Tartaglia triangle (also known as Pascal’s triangle): \([[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], \ldots]\].

Specification

Define the following functions:

- `ones :: [Integer]`
- `nats :: [Integer]`
- `ints :: [Integer]`
- `triangulars :: [Integer]`
- `factorials :: [Integer]`
- `fibs :: [Integer]`
- `primes :: [Integer]`
- `hammings :: [Integer]`
- `lookNsay :: [Integer]`
- `tartaglia :: [[[Integer]]]`

Observation

In this problem you cannot use infinite enumerations such as \([1..]\), but you are advised to use higher-order functions such as `map`, `scanl`, `iterate`, `filter`, ...

Scoring

Each function scores 10 points.
Sample input

take 8 ones

take 8 nats

take 8 ints

take 8 triangulars

take 8 factorials

take 8 fibs

take 8 primes

take 8 hammings

take 8 lookNsay

take 6 tartaglia

Sample output

[1, 1, 1, 1, 1, 1, 1, 1]

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, -1, 2, -2, 3, -3, 4]

[0, 1, 3, 6, 10, 15, 21, 28]

[1, 1, 2, 6, 24, 120, 720, 5040]

[0, 1, 1, 2, 3, 5, 8, 13]

[2, 3, 5, 7, 11, 13, 17, 19]

[1, 2, 3, 4, 5, 6, 8, 9]

[1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211]

[1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1]

Problem information

Author : Albert Rubio / Jordi Petit
Translator : Jordi Petit
Generation : 2016-01-20 11:30:38

http://www.jutge.org