Jutge.org

The Virtual Learning Environment for Computer Programming

Zeroes of polynomials

Primer Concurs de Programació de la UPC - Final (2003-09-23)
Given a function f continuous in an interval $[a, b]$, and such that $f(a) \cdot f(b)<0$, a basic theorem of Mathematics states that there must exist at least one zero of f in (a, b), that is, a real number z such that $a<z<b$ and $f(z)=0$.
Given a polynomial $p(x)=c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}$ with exactly one zero in (0,1), can you find this zero?

Input

Each input line describes a polynomial $p(x)$ of degree at most 4 with exactly one zero in $(0,1)$. Each polynomial is given in decreasing order of i as follows: $c_{4} 4 c_{3} 3 c_{2} 2 c_{1} 1 c_{0} 0$. Every c_{i} is a real number. The pairs $c_{i} i$ with $c_{i}=0$ are not present in the input.

Output

For every polynomial, print its case number, followed by an approximation of its zero z in (0,1), with the following convention: z must be a real number with exactly 5 digits after the decimal point, such that $0 \leq z \leq 0.99999$ and $p(z) \cdot p(z+0.00001)<0$. Always print the 5 decimal digits of z.

Observations

- Every given polynomial is such that $p(x) \neq 0$ for every real number $x \in[0,1]$ that has 5 (or less) decimal digits after the decimal point.
- The test cases have no precisions issues. However, be aware that it is not wise to check the property $p(z) \cdot p(z+0.00001)<0$ just like this.

Sample input

```
-1 2 0.5 0
4 3
4.65 4 -0.11 3 0.53 2 -6.51 1 0.13 0
6.31 4 7.64 3 -5.29 2 0.55 1 -9.2 0
```


Sample output

```
Case 1: zero at 0.70710.
Case 2: zero at 0.16993.
Case 3: zero at 0.02000.
Case 4: zero at 0.99973.
```


Problem information

Author : Salvador Roura
Generation : 2013-09-10 14:53:18
© Jutge.org, 2006-2013.
http://www.jutge.org

