
Swedish coins (1)**P95248_en**

You have a collection C of n old Swedish coins. Every coin i has a probability p_i of landing heads (and a probability $1-p_i$ of landing tails). Consider the following experiment for every subset S of C : Flip each coin in S exactly once, and count the number of heads; you win if this number is odd. Let $w(S)$ denote the winning probability of the subset S .

Given two real numbers ℓ and r , and a collection of coins C , how many subsets S of C are such that $\ell < w(S) < r$?

Input

Input consists of several cases. Every case begins with two real numbers ℓ and r , followed by n , followed by $p_1 \dots p_n$. Assume $0 < \ell < r < 1$, $1 \leq n \leq 40$ and $0 < p_i < 1$.

Output

For every case, print the number of subsets S such that $\ell < w(S) < r$. The input cases have no precision issues.

Observation

Please take into account that the result can be larger than 10^{12} .

Sample input 1

```
0.2 0.4
1 0.3

0.4 0.5
1 0.3

0.45 0.71
2 0.7 0.6

0.49 0.51
5 0.5 0.5 0.5 0.5 0.5
```

Sample output 1

```
1
0
3
31
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T12:07:47.602Z

© Jutge.org, 2006–2026.

<https://jutge.org>