Jutge.org

The Virtual Learning Environment for Computer Programming

On the beach P94819_en

Tretzè Concurs de Programació de la UPC - Semifinal (2015-07-01)

You have been sunbathing on a sand beach, and now you want to take a bath. You touch the sand, but it burns! How can you minimize the total pain to reach the sea?

Assume a two-dimensional world. The beach has length ℓ and width w. Where $y \leq 0$, there is sea. Where $0 < x < \ell$ and 0 < y < w, there is sand. The rest is covered by grass. You are at a position (a,b) strictly inside the beach. Walking a unit on the sand causes pain s. Walking a unit on the grass causes pain g, with g < s.

To the right we see an example with $\ell = w = 30$, a = 12 and b = 20. The black dot shows the origin (0,0). The red dot shows your position. If s = 3 and g = 2, the best path (in blue) goes straight into the sea. If s = 13 and g = 5, the best path (in pink) goes first straight on the sand to the point (0,15), and then straight on the grass into the sea.

Given ℓ , w, a, b, s and g, can you minimize the pain to reach the sea?

Input

Input consists of several cases, each with ℓ , w, a, b, s and g. They are strictly positive real numbers with at most three digits after the decimal point. Assume $a < \ell$, b < w, and g < s.

Output

For every case, print the minimum total pain to reach the sea with three digits after the decimal point. The input cases have no precision issues.

Sample input

30	30	12	20	3 2	2		
30	30	12	20	13	5		
25.	. 5	12.1	23	3.6	4.7	18.4	5.3

Sample output

60.000 244.000 58.388

Problem information

Author: Salvador Roura

Generation: 2024-05-03 09:25:31

© *Jutge.org*, 2006–2024. https://jutge.org