Jutge.org

The Virtual Learning Environment for Computer Programming

On the beach

P94819_en
Tretzè Concurs de Programació de la UPC - Semifinal (2015-07-01)
You have been sunbathing on a sand beach, and now you want to take a bath. You touch the sand, but it burns! How can you minimize the total pain to reach the sea?

Assume a two-dimensional world. The beach has length ℓ and width w. Where $y \leq 0$, there is sea. Where $0<x<\ell$ and $0<y<w$, there is sand. The rest is covered by grass. You are at a position (a, b) strictly inside the beach. Walking a unit on the sand causes pain s. Walking a unit on the grass causes pain g, with $g<s$.
To the right we see an example with $\ell=w=30$, $a=12$ and $b=20$. The black dot shows the origin $(0,0)$. The red dot shows your position. If $s=3$ and $g=2$, the best path (in blue) goes straight into the sea. If $s=13$ and $g=5$, the best path (in pink) goes first straight on the sand to the point $(0,15)$, and then straight on the grass into the sea.

Given ℓ, w, a, b, s and g, can you minimize the pain to reach the sea?

Input

Input consists of several cases, each with ℓ, w, a, b, s and g. They are strictly positive real numbers with at most three digits after the decimal point. Assume $a<\ell, b<w$, and $g<s$.

Output

For every case, print the minimum total pain to reach the sea with three digits after the decimal point. The input cases have no precision issues.

Sample input

```
30}303012 20 3 2 
30
25.5 12.1 23.6 4.7 18.4 5.3
```

```
Sample output
60.000
244.000
58.388
```


Problem information

Author: Salvador Roura
Generation : 2015-07-02 18:49:29
© Jutge.org, 2006-2015.
http://www.jutge.org

