
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Parcial 2018-04-11 P91910_ca

Apartat 1: Llista infinita
Escriviu una funció multEq :: Int → Int → [Int] que, donats dos nombres positius 𝑥 i 𝑦 difer-
ents de zero, genera la llista infinita ordenada creixentment que conté els nombres formats
per la multiplicació de la mateixa quantitat de 𝑥 que de 𝑦.

Apartat 2: Selecció
Escriviu una funció selectFirst :: [Int] → [Int] → [Int] → [Int] que, donades tres llistes l1, l2
i l3 retona els elements de l1 que apareixen a l2 en una posició menor estrictament que a l3.
Si un element apareix a l2 i no a l3 es considera que apareix en una posició anterior.

Apartat 3: iterate amb scanl
Definiu una funció myIterate :: (a → a) → a → [a] que faci el mateix que iterate, però imple-
mentada en termes d’scanl.

Apartat 4: Taula de símbols
Considereu una taula de símbols genèrica que converteix textos (Strings) en valors de tipus
a definida per type SymTab a = String → Maybe a.
La taula de símbols retorna unMaybe a i no un a perquè poder indicar cerques sense èxit.
Les operacions sobre la taula de símbols són:

empty :: SymTab a
get :: SymTab a → String → Maybe a
set :: SymTab a → String → a → SymTab a

on empty crea una taula de símbols buida, get retorna el valor d’un text a la taula de símbols
(amb Just si hi és o Nothing si no hi és), i set retorna una nova taula de símbols definint un
nou valor per a un símbol (i sobrescrivint el valor antic si el símbol ja era a la taula).
Implementeu aquestes tres operacions sobre el type donat (que no podeu canviar).

Apartat 5: Expressions amb símbols
Considereu el següent tipus genèric per a expressions de tipus a amb variables:
data Expr a
= Val a
| Var String
| Sum (Expr a) (Expr a)
| Sub (Expr a) (Expr a)



|Mul (Expr a) (Expr a)
deriving Show

Escriviu una funció eval :: (Num a) ⇒ SymTab a → Expr a → Maybe a que, evaluï una expres-
sió utilitzant una taula de símbols, retornant Nothing si alguna variables no està definida a
la taula.

Exemple d’entrada 1
take 6 $ multEq 2 3
take 5 $ multEq 3 7

Exemple de sortida 1
[1,6,36,216,1296,7776]
[1,21,441,9261,194481]

Exemple d’entrada 2
selectFirst [] [] []
selectFirst [8,4,5,6,12,1] [] [8,6,5,4,1]
selectFirst [8,4,5,6,12,1] [4,5,6,2,8,12] []
selectFirst [8,4,5,6,12,1] [4,5,6,2,8,12] [8,6,5,4,1]

Exemple de sortida 2
[]
[]
[8,4,5,6,12]
[4,5,12]

Exemple d’entrada 3
take 10 $ myIterate (+1) 0
take 10 $ myIterate (*2) 1
take 10 $ myIterate ('a':) []
take 8 $ myIterate (++"y") "x"

Exemple de sortida 3
[0,1,2,3,4,5,6,7,8,9]
[1,2,4,8,16,32,64,128,256,512]
["","a","aa","aaa","aaaa","aaaaa","aaaaaa","aaaaaaa","aaaaaaaa","aaaaaaaaa"]
["x","xy","xyy","xyyy","xyyyy","xyyyyy","xyyyyyy","xyyyyyyy"]

Exemple d’entrada 4
get (set empty "a" 1) "a"
get (set empty "a" 1) "b"
get (set (set empty "a" 1) "b" 2) "a"
get (set (set empty "a" 1) "b" 2) "b"
get (set (set empty "a" 1) "b" 2) "c"
get (set (set empty "a" 1) "a" 2) "a"



Exemple de sortida 4
Just 1
Nothing
Just 1
Just 2
Nothing
Just 2

Exemple d’entrada 5
let st1 = set (set empty "a" 1) "b" 2
let st2 = set (set empty "a" 4) "b" 3
let e1 = Mul (Val 5) (Sum (Var "a") (Var "b"))
let e2 = Mul (Val 5) (Sum (Var "a") (Var "c"))
let e3 = Sub (Var "a") (Var "b")
eval st1 e1
eval st2 e1
eval st1 e2
eval st2 e2
eval st1 e3
eval st2 e3

Exemple de sortida 5
Just 15
Just 35
Nothing
Nothing
Just (-1)
Just 1

Informació del problema
Autoria: Jordi Petit i Albert Rubio

Generació: 2026-02-03T17:06:19.810Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

