Jutge.org

The Virtual Learning Environment for Computer Programming

Strongly connected components
Quart Concurs de Programació de la UPC - Semifinal (2006-09-20)
A directed graph $G=(V, A)$ consists of a set of vertices V and a set of arcs A. An arc is an ordered pair (u, v), where $u, v \in V$. A path from a vertex $v_{i_{1}}$ to a vertex $v_{i_{k}}$ is a sequence of $\operatorname{arcs}\left(v_{i_{1}}, v_{1_{2}}\right),\left(v_{i_{2}}, v_{i_{3}}\right), \ldots,\left(v_{i_{k-1}}, v_{i_{k}}\right)$. By definition, there is always a path from every vertex to itself.
Consider the following equivalence relation: two vertices u and v of G are related if, and only if, there is a path from u to v and a path from v to u. Every equivalence class resulting from this definition is called a strongly connected component of G.
Given a directed graph, calculate how many strongly connected components it has.

Input

Input begins with the number of cases. Each case consists of the number of vertices n and the number of arcs m, followed by m pairs (u, v). Vertices are numbered starting at 0 . There are not repeated arcs, nor self-arcs (v, v). Assume $1 \leq n \leq 10^{4}$.

Output

For every graph, print its number of strongly connected components.

Sample input

3

```
3 3
0
```

$7 \quad 7$
$\begin{array}{llllllllllllll}0 & 1 & 1 & 2 & 2 & 0 & 3 & 4 & 4 & 6 & 6 & 3 & 0 & 6\end{array}$
$\begin{array}{ll}6 & 7\end{array}$
$\begin{array}{llllllllllllll}0 & 1 & 0 & 2 & 1 & 3 & 2 & 3 & 3 & 4 & 4 & 2 & 5 & 4\end{array}$

Sample output

Graph \#1 has 1 strongly connected component(s).
Graph \#2 has 3 strongly connected component (s).
Graph \#3 has 4 strongly connected component(s).

Problem information

Author : Xavier Martínez
Generation : 2018-10-29 15:25:58
© Jutge.org, 2006-2018.
https://jutge.org

