

Arithmetic derivative

P86263_en

Given a natural number n , its arithmetic derivative $d(n)$ is defined as follows:

- $d(0) = d(1) = 0$.
- If n is prime, then $d(n) = 1$.
- Let $n = x \cdot y$, with $1 < x, y < n$. Then $d(n) = x \cdot d(y) + y \cdot d(x)$.

For instance, $d(4) = 2d(2) + 2d(2) = 2 + 2 = 4$, and $d(6) = 3d(2) + 2d(3) = 3 + 2 = 5$. It can be proven that this definition is consistent. For example, $d(12) = 4d(3) + 3d(4) = 4 + 12 = 16$, and also $d(12) = 6d(2) + 2d(6) = 6 + 10 = 16$.

We say that f is a fixed point of $d(n)$ if $d(f) = f$. For instance, 0 and 4 are fixed points. Given ℓ and r , can you compute the number of fixed points of $d(n)$ in $[\ell..r]$?

Input

Input consists of several cases, each one with ℓ and r , with $0 \leq \ell \leq r \leq 10^{18}$.

Output

For each case, print the number of fixed points of $d(n)$ in $[\ell..r]$.

Problem information

Author: Salvador Roura

Generation: 2026-01-25T12:08:05.766Z

© Jutge.org, 2006–2026.

<https://jutge.org>