
Pillars**P85783_en**

The world-famous architect Mr. Fruí from Reus is planning to build a colossal pillar H units high. Mr. Fruí has n black pieces with heights b_1, \dots, b_n , and m white pieces with heights w_1, \dots, w_m . According to his design, the pillar must have four pieces: a black piece at its bottom, a white piece above it, another black piece above, and finally a white piece at the top of the pillar.

Mr. Fruí wishes to know which combination of four pieces with total height H is the most stable. Given two combinations $A = [a_1, a_2, a_3, a_4]$ and $B = [b_1, b_2, b_3, b_4]$ (where a_1 denotes the height of the bottom (black) piece of the pillar A , a_2 denotes the height of the second (white) piece of A , and so on), we say that A is more stable than B if $a_1 > b_1$, or if $a_1 = b_1$ but $a_2 > b_2$, etc. In other words, A is more stable than B if and only if the sequence of heights of the pieces of A is lexicographically larger than the sequence of heights of the pieces of B .

Write a program such that, given the desired height H of the pillar, the heights of the black pieces and the heights of the white pieces, computes which pillar (if any) of height exactly H would be the most stable.

Input

Input consists of several cases, each in three lines. The first line has H , an integer number between 1 and $4 \cdot 10^8$. The second and third lines consist respectively of b_1, \dots, b_n and of w_1, \dots, w_m . A blank line separates two cases. Assume $2 \leq n \leq 1000$ and $2 \leq m \leq 1000$, and that no piece has a height larger than 10^8 .

Output

For every case, print the sequence of heights of the pieces of the most stable pillar, from bottom to top. If no solution exists, print “no solution”.

Sample input 1

```
100
20 20
30 10 30 50
```

```
100
20 10 4
50 30 45
```

Sample output 1

```
20 50 20 10
no solution
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T12:06:33.927Z