
Football corruption**P84060_en**

An infamous football club (let us call it X) wants to buy yet another competition. There are n teams, where $n = 2^m$ for some m . As usual, the tournament scheme is a complete binary tree, so X will have to win m matches to be the champion. The president of X knows, for every pair of teams i and j , the probability p_{ij} that i eliminates j . So he will bribe the football federation, and arrange the play offs so as to maximize the probability that X wins the competition. Can you compute that probability?

Input

Input consists of several cases, each one with n , followed by n lines with n probabilities each, where the j -th number of the i -th line is p_{ij} . Assume $1 \leq m \leq 3$, that $p_{ji} = 1 - p_{ij}$ for every $i \neq j$, and that the diagonal of the matrix has only -1 . X is the first team.

Output

For every case, print the probability with four digits after the decimal point. The input cases have no precision issues.

Hint

The expected solution is a “reasonable” backtracking. For instance, 2000 tests with $n = 8$ should be solved in at most one second.

Sample input 1

```
2
-1 0.6
0.4 -1

4
-1 1 0.5 0
0 -1 0.7 0.8
0.5 0.3 -1 0.1
1 0.2 0.9 -1

8
-1 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9 -1 0.9 0.8 0.7 0.6 0.5 0.4
0.8 0.1 -1 0.1 0.2 0.3 0.4 0.5
0.7 0.2 0.9 -1 0.5 0.6 0.7 0.8
0.6 0.3 0.8 0.5 -1 0.2 0.4 0.6
0.5 0.4 0.7 0.4 0.8 -1 0.8 0.4
0.4 0.5 0.6 0.3 0.6 0.2 -1 0.3
0.3 0.6 0.5 0.2 0.4 0.6 0.7 -1
```

Sample output 1

```
0.6000
0.4000
0.1100
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T12:00:55.986Z

© *Jutge.org*, 2006–2026.
<https://jutge.org>