
Petr's problem**P78605_en**

A permutation p_1, \dots, p_n is a sequence of numbers between 1 and n such that each number appears exactly once. An inversion in a permutation is a pair of indices (i, j) such that $i < j$ but $p_i > p_j$. The weight of an inversion (i, j) is $j - i$.

How many permutations of n elements exist where the sum of weights of all inversions is equal to x ? For instance, there are exactly two such permutations for $n = 4$ and $x = 4$: 3, 2, 1, 4 and 1, 4, 3, 2.

Input

Input consists of several cases, each one with n and x . You can assume $1 \leq n \leq 14$ and $0 \leq x \leq (n + 1)n(n - 1)/6$.

Output

For every case, print the number of permutations of n elements such that the sum of weights of all inversions is x .

Sample input 1

```
4 4
1 0
14 455
14 200
```

Sample output 1

```
2
1
1
486253544
```

Problem information

Author: Petr Mitrichev

Generation: 2026-01-25T11:59:58.503Z

© Jutge.org, 2006–2026.

<https://jutge.org>