
Covering with intervals

P76554_en

Given a natural k and several numbers x_1, \dots, x_n , we want to find the smallest possible set of closed intervals of length k that cover those numbers. In other words, we must find a set of intervals $\{[y_1, y_1 + k], \dots, [y_m, y_m + k]\}$ such that

- for every x_i , there exists some j such that $x_i \in [y_j, y_j + k]$;
- m is minimum.

For instance, if $k = 10$ and the x_i 's are 14, 19, 23 and 27, a possible solution is $\{[12, 22], [18, 28]\}$, since every x_i belongs to (at least) one of the two intervals, and it is not possible to cover the four numbers with a single interval.

Input

Input consists of several cases, each of which starts with k , followed by n , followed by n different numbers. All numbers in the input are integers. Assume $1 \leq k, n \leq 10^5$.

Output

For every case, print the minimum number of closed intervals of length k that cover the given numbers.

Sample input 1	Sample output 1
10 4 14 19 23 27 100 6 175 350 50 300 150 20 10 2 -25 -35	2 3 1

Problem information

Author: Enric Rodriguez

Translator: Enric Rodriguez

Generation: 2026-01-25T11:53:50.741Z

© Jutge.org, 2006–2026.

<https://jutge.org>