Jutge.org

The Virtual Learning Environment for Computer Programming

Covering with intervals

Given a natural k and several numbers x_{1}, \ldots, x_{n}, we want to find the smallest possible set of closed intervals of length k that cover those numbers. In other words, we must find a set of intervals $\left\{\left[y_{1}, y_{1}+k\right], \ldots,\left[y_{m}, y_{m}+k\right]\right\}$ such that

- for every x_{i}, there exists some j such that $x_{i} \in\left[y_{j}, y_{j}+k\right]$;
- m is minimum.

For instance, if $k=10$ and the x_{i}^{\prime} s are $14,19,23$ and 27, a possible solution is $\{[12,22],[1.8,2.8]\}$, since every x_{i} belongs to (at least) one of the two intervals, and it is not possible to cover the four numbers with a single interval.

Input

Input consists of several cases, each of which starts with k, followed by n, followed by n different numbers. All numbers in the input are integers. Assume $1 \leq k, n \leq 10^{5}$.

Output

For every case, print the minimum number of closed intervals of length k that cover the given numbers.

Sample input

```
10}40414\quad19 23 27 
100}66\mp@code{175}3550 50 300 150 20
10 2 -25 -35
```


Sample output
 2 3 1

Problem information

Author: Enric Rodriguez
Translator: Enric Rodriguez
Generation : 2023-07-15 12:33:42
© Jutge.org, 2006-2023.
https://jutge.org

