
Smallest lexicographic path**P76480_en**

Given a DAG G with n vertices and m arcs with *unique* positive integer labels on the arcs, find the smallest lexicographic path (considering the labels on the arcs, not the numbers of the vertices) between 0 and $n - 1$.

A DAG (directed acyclic graph) is a directed graph without cycles. Given two sequences of integers a_1, \dots, a_k and b_1, \dots, b_l , we say a is lexicographically smaller than b when, for the first i such that $a_i \neq b_i$, we have that $a_i < b_i$, or when $k < l$ in case that no such i exists.

Input

Input consists of several cases. Every case consists of n and m , followed by m triples u, v, w meaning that there is an arc from u to v with label w . Assume $2 \leq n \leq 10^5$, $0 \leq m \leq 5n$, $1 \leq w \leq 10^9$, that vertices are numbered between 0 and $n - 1$, $u \neq v$, and that there is no more than one arc from u to v . All w are distinct in every given case.

Output

For every case, print the smallest lexicographic path between 0 and $n - 1$. Print the labels separated by spaces. If there is no path between 0 and $n - 1$, print -1.

Sample input 1

```
3 3
0 1 100
1 2 300
0 2 200

4 5
2 3 50
1 2 20
0 1 10
1 3 30
0 2 40

2 1
1 0 1000000000
```

Sample output 1

```
100 300
10 20 50
-1
```

Problem information

Author: Miquel Ortega

Generation: 2026-01-25T11:53:32.649Z

© Jutge.org, 2006–2026.

<https://jutge.org>