
Jutge.org
The Virtual Learning Environment for Computer Programming

OPHP (4) P74143_es

Para una secuencia de tokens (como los de la salida del problema OPHP 3) tu programa de-
berá interpretarlos, y decir si representan una expresión OPHP correcta o no. Te recordamos
que los tokens que puedes recibir son:

• VAR: Una variable

• NUM: Un número

• OP+: Una operación con prioridad aditiva (+, -).

• OP*: Una operación con prioridad multiplicativa (*, /, %).

• (,), =: Paréntesis abierto, cerrado o asignación.

Las expresiones OPHP se definen a partir de las siguientes reglas,

• TERM ← VAR | NUM | (EXPR2),

• EXPR1 ← TERM OP* EXPR1 | TERM,

• EXPR2 ← EXPR1 OP+ EXPR2 | EXPR1,

• ASSIG ← VAR = EXPR2.

El significado de estas reglas es el siguiente: si tienes una secuencia de tokens como las que
aparecen en la parte derecha de la regla, puedes substituir dicha secuencia por el correspon-
diente token de la parte izquierda de la regla. El símbolo | es un separador: por ejemplo,
puedes obtener un TERM a partir de un NUM, de un VAR, o de una secuencia de 3 tokens (,
EXPR2 y).
Te pedimos que escriba un programa que determine, dada una secuencia de tokens básicos
(VAR, NUM, OP+, OP*, (,), =), si es posible transformar la secuencia entera en un
token de tipo ASSIG, o si por el contrario, la expresión dada no es una asignación válida de
OPHP.

Entrada
Una secuencia de líneas, cada una de las cuales contiene una secuencia de tokens básicos
como los descritos.

Salida
Para cada línea de la entrada, escribe Ok si la expresión puede transformarse en un token
ASSIG, y No si esto no es posible.

Pista
Aunque este problema puede resolverse usando un atajo, te recomendamos que lo resuelvas
programando funciones recursivas del tipo

• int ASSIG(int from, const vector<string>& tokens);

• int EXPR2(int from, const vector<string>& tokens);

• int EXPR1(int from, const vector<string>& tokens);

• int TERM(int from, const vector<string>& tokens);

(o el equivalente en el lenguaje de programación que utilices) que devuelvan un entero 𝑖
tal que tokens[from], tokens[from+1], …, tokens[i-1], tokens[i] es la secuencia
más larga de tokens que puede ser transformada en un token de tipo ASSIG, EXPR2, EXPR1
y TERM respectivamente. Como estas funciones recursivas se llamarán mutuamente, si pro-
gramas en C o en C++ tendrás que declarar las cabeceras de las funciones antes de definirlas.

Ejemplo de entrada 1
VAR = NUM
VAR = VAR
VAR = ((NUM))
VAR = NUM OP* VAR OP+ NUM
VAR = NUM OP* (VAR OP+ NUM)
VAR = VAR OP+ VAR OP+ NUM OP+ VAR OP+ NUM
VAR = VAR OP+ VAR OP* NUM OP+ VAR OP+ NUM
VAR = (NUM OP+ (NUM OP* VAR) OP+ NUM)

Ejemplo de salida 1
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok

Ejemplo de entrada 2
VAR =
VAR = (NUM))
VAR = NUM NUM
VAR = VAR (NUM OP+ NUM)
NUM = NUM
= VAR
NUM OP+ NUM
VAR = ((NUM)))
VAR = ((((NUM)))
VAR = ()
VAR = NUM OP* VAR OP+ NUM OP+
VAR = OP* NUM OP* (VAR OP+ NUM)
VAR = VAR OP+ VAR OP+ OP+ NUM OP+ NUM
VAR = (NUM OP+ VAR) (NUM OP+ VAR)
VAR = (VAR OP+ (NUM OP* VAR) OP+) OP+)

Ejemplo de salida 2
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Información del problema
Autoría: Omer Giménez

Generación: 2026-01-25T11:46:12.258Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

