Jutge.org

The Virtual Learning Environment for Computer Programming

OPHP (4) P74143_es

Para una secuencia de tokens (como los de la salida del problema OPHP 3) tu programa de-
beré interpretarlos, y decir si representan una expresién OPHP correcta o no. Te recordamos
que los tokens que puedes recibir son:

e VAR: Una variable

e NUM: Un niimero

OP+: Una operacion con prioridad aditiva (+, -).

OP *: Una operacion con prioridad multiplicativa (*, /, %).
e (,),=: Paréntesis abierto, cerrado o asignacion.

Las expresiones OPHP se definen a partir de las siguientes reglas,
e TERM « VAR |NUM| (EXPR2),
e EXPR1 « TERM OP* EXPRI1 | TERY,
e EXPR2 « EXPR1 OP+ EXPR2 |EXPRI,
e ASSIG « VAR = EXPR2.

El significado de estas reglas es el siguiente: si tienes una secuencia de tokens como las que
aparecen en la parte derecha de la regla, puedes substituir dicha secuencia por el correspon-
diente token de la parte izquierda de la regla. El simbolo | es un separador: por ejemplo,
puedes obtener un TERM a partir de un NUM, de un VAR, o de una secuencia de 3 tokens (,
EXPR2y).

Te pedimos que escriba un programa que determine, dada una secuencia de tokens basicos
(VAR, NUM, OP+, OP*, (,), =), sies posible transformar la secuencia entera en un
token de tipo ASSIG, o si por el contrario, la expresién dada no es una asignacién valida de
OPHP.

Entrada

Una secuencia de lineas, cada una de las cuales contiene una secuencia de tokens bésicos
como los descritos.

Salida

Para cada linea de la entrada, escribe Ok si la expresiéon puede transformarse en un foken
ASSIG, y No si esto no es posible.

Pis

ta

Aunque este problema puede resolverse usando un atajo, te recomendamos que lo resuelvas
programando funciones recursivas del tipo

e int ASSIG(int from,
e int EXPR2 (int from,

e int EXPRI1 (int from,

const vector<string>& tokens);

const vector<string>& tokens);

const vector<string>& tokens);

e int TERM(int from, const vector<string>& tokens);

(o el equivalente en el lenguaje de programacién que utilices) que devuelvan un entero i
tal que tokens[from], tokens[from+1], ..., tokens[i-1], tokens[1] eslasecuencia
mas larga de tokens que puede ser transformada en un foken de tipo ASSIG, EXPR2, EXPR1
y TERM respectivamente. Como estas funciones recursivas se llamardn mutuamente, si pro-
gramas en C o en C++ tendras que declarar las cabeceras de las funciones antes de definirlas.

Ejemplo de entrada 1

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

= NUM
= VAR

= ((NUM))

= NUM OP* VAR OP+ NUM

= NUM OP* (VAR OP+ NUM)

= VAR OP+ VAR OP+ NUM OP+ VAR OP+ NUM
= VAR OP+ VAR OP* NUM OP+ VAR OP+ NUM
OP+ NUM)

= (NUM OP+ (NUM OP* VAR

Ejemplo de entrada 2

VAR =
VAR = (NUM))

VAR = NUM NUM

VAR = VAR (NUM OP+ NUM)

NUM = NUM

= VAR

NUM OP+ NUM

VAR = ((NUM)))

VAR = ((((NUM)))

VAR = ()

VAR = NUM OP* VAR OP+ NUM OP+

VAR = OP* NUM OP* (VAR OP+ NUM)

VAR = VAR OP+ VAR OP+ OP+ NUM OP+ NUM
VAR = (NUM OP+ VAR) (NUM OP+ VAR)
VAR = (VAR OP+ (NUM OP* VAR) OP+)

Informacién del problema

Autoria: Omer Giménez

)

Generacion: 2026-01-25T11:46:12.258Z

© Jutge.org, 2006-2026.
https:/ /jutge.org

OPH

Ejemplo de salida 1

Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok

Ejemplo de salida 2

https://jutge.org

