Jutge.org

The Virtual Learning Environment for Computer Programming

Haskell — Expressions P70540_en

We want to have a module to mainpulate and evaluate integer expressions with addition,
substraction, multiplication and division operations. In order to do so, the following type is
declared:

data Expr = Val Int | Add Expr Expr | Sub Expr Expr | Mul Expr Expr | Div Expr Expr
For instance, Add (Val 3) (Div (Val 4) (Val 2)) represents 3 + 4/2, which evaluates to 5.

1. Evaluation without errors (20 points)

Using the Expr type, define a function evall :: Expr — Int that, given an expression, returns
its evaluation. You can assume there will never be divisions by zero.

2. Evaluation with possible error (30 points)

Using the Expr type, define a function eval2 :: Expr — Maybe Int that, given an expression,
returns its evaluationn as a Just value. In the case that some division by zero occurs, the
result must be Nothing. You probably want to use the do notation over the Maybe 2 monad.

3. Evaluation with error report (30 points)

Using the Expr type, define a function eval3 :: Expr — Either String Int that, given an expres-
sion, returns its evaluation as Right value. In the case that some division by zero occurs, the
result must be Left "div0". You probably want to use the do notation over the Eithera b
monad.

Sample input 1

evall (val 2)

evall (Add (Val 2) (val 3))

evall (Sub (Val 2) (Val 3))

evall (Div (Val 4) (val 2))

evall (Mul (Add (vVal 2) (Val 3)) (Sub (val 2) (val 3)))
Sample output 1

2

5

-1

2

-5

Sample input 2

eval2 (vVal 2)

eval2 (Add (val 2) (Val 3))

eval2 (Sub (Val 2) (Val 3))

eval2 (Div (Val 4) (val 2))

eval2 (Mul (Add (Val 2) (val 3)) (Sub (val 2) (val 3)))
eval2 (Div (Val 4) (val 0))

eval2 (Add (Div (Val 4) (val 0)) (val 3))
eval2 (Add (val 3) (Div (val 4) (val 0)))

Sample output 2

Just 2

Just 5

Just (-1)

Just 2

Just (-5)

Nothing

Nothing

Nothing

Sample input 3

eval3 (Val 2)

eval3 (Add (Val 2) (vVal 3))

eval3 (Sub (Val 2) (val 3))

eval3 (Div (Val 4) (val 2))

eval3 (Mul (Add (Val 2) (val 3)) (Sub (val 2) (vVal 3)))
eval3 (Div (Val 4) (val 0))

eval3 (Add (Div (vVal 4) (val 0)) (val 3))
eval3 (Add (vVal 3) (Div (val 4) (val 0)))
Sample output 3

Right 2

Right 5

Right (-1)

Right 2

Right (-5)

Left "div0"

Left "div0"

Left "div0"

Problem information

Author: Jordi Petit
Translator: Jordi Petit

Generation: 2026-02-03T17:02:03.286Z

© Jutge.org, 2006-2026.
https://jutge.org

https://jutge.org

