Jutge.org

The Virtual Learning Environment for Computer Programming

Fractals

Vint-i-dosè Concurs de Programació de la UPC - Semifinal (2024-06-27)
Consider an $n \times m$ matrix of chars M, which may include '. ', ' x ', ' p ' and ' n '. Define the "negative" of M as the matrix result of replacing each '.' by ' x ', each ' x ' by '. ', each ' p ' by ' n ', and each ' n ' by ' p '. For instance, the negative of

$$
\operatorname{Xpx} \text { is } \cdot n .
$$

We can use M to create some kind of fractals, by repeatedly replacing each character c of the current matrix by an $n \times m$ matrix, with these rules:

- If $c=$ '. ', replace c by an $n \times m$ matrix with all '. '.
- If $c=$ ' x ', replace c by an $n \times m$ matrix with all ' x '.
- If $c=$ ' p ', replace c by M.
- If $c=$ ' n ', replace c by the negative of M.

With the example above, after one step we get

```
xxxxpxxxx
xxx.n.xxx
....n....
...xpx...
and after two steps we get
```



```
XXXXXXXXXXXX.n.ExXXXXXXXXXX
xxxxxxxxx....n....xXXXXXXXX
xxxxxxxxx...\px...xxyxxxxxx
............n.............
.............. . . . . . . . . . . . .
..........xxxxpxxxx..........
..........xxx.n.xxx..........
```

Can you simulate this process k times?

Input

Input consists of several cases. Every case begins with n, m and k, followed by an $n \times m$ matrix M as explained above. Assume that n and m are between 1 and 100 , and $k \geq 1$.

Output

Print k matrices for each case: the result after one step, two steps, etc. Separate these matrices by blank lines. End each case with 10 asteriscs. When printing the results, replace each ' p ' by ' x ', and each ' n ' by '. '. With the given cases, no result will have more than 10^{6} chars.

Sample input	Sample output
232	xxxxxxxxx
XpX	xxx. . xxx
.n.	
111	... XXX ...
n	xxxxxxxxxxxx... xxxxxxxxxxxx
124	xxxxxxxxx. xxxxxxxxx $^{\text {dex }}$
pn	xxxxxxxxx. . x xx. . . x dxxxxxx
232 x xx
p.p	
ppp	

	X
	$\begin{aligned} & \text { ********** } \\ & \text { x..x } \end{aligned}$
	x. .x.xx.
	x..x.xx. $\mathrm{xx} . \mathrm{x} . . \mathrm{x}$
	X.X...X.X
	XXX... XXX
	X. XX . XX . X
	xxxxxxxxx
	x.x...x.x.........x.x...x.x
	xxx. . x xx. $\mathrm{xxx}^{\text {. . . }}$ xxx
	xxxxxxxxx. xxxxxxxxx $^{\text {d }}$
	X.x...x.xx.x...X.xx.x...x.x
	xxx...xxxxxx. . x xxxxx. . $\mathrm{xxx}^{\text {d }}$
	X. XX . X
	ExXXXXXXXXXXXXXXXXXXXXXXXXX

Problem information

Author: Salvador Roura
Generation : 2024-06-27 09:54:10
© Jutge.org, 2006-2024.
https://jutge.org

