
The Cube

P66524_en

You are locked in “The Cube”. It is a gigantic three-dimensional structure made up of cubic rooms distributed in a three-dimensional grid. Therefore, we can identify each room with its coordinates $(x, y, z) \in \mathbb{Z}^3$. Two rooms that completely share a face are connected. Hence, every room has six adjacents rooms. You need one minute to move from a room to any adjacent room.

After some exploration, you have discovered a way out. You have identified n special rooms with coordinates (x_i, y_i, z_i) . You know that at a certain moment an alarm will sound and an announcement of which of the n rooms is the exit will be broadcast. To maximize your chances of survival, you will wait in a room that minimizes the average time to reach a special room.

Can you compute the sum of times to reach every special room if you place yourself in an optimal room?

Input

Input consists of several cases, each with n , followed by n different triplets $x_i \ y_i \ z_i$. Assume $1 \leq n \leq 10^5$ and that the coordinates are natural numbers between 1 and 10^9 .

Output

For every case, print the minimum sum of times to reach every special room.

Sample input 1

```
1 23 42 100
2 1 1 1 10 20 30
4 1 1 1000000000 1 1000000000 1 1000000000 1 1 999999999 999999998 999999997
```

Sample output 1

```
0
57
5999999988
```

Problem information

Author: Edgar Moreno

Generation: 2026-01-25T11:29:14.176Z

© Jutge.org, 2006–2026.

<https://jutge.org>