Cheapest triangulation

Given a simple polygon with \(n \) vertices, there is always at least one way to decompose it in triangles by adding \(n - 3 \) diagonals. For instance, these are three of the many triangulations of the same polygon:

Define the cost of a triangulation as the sum of the lengths of the diagonals that have been added. Given a \textit{convex} polygon, what is the cost of its cheapest triangulation?

Input

Input consists of several cases. Every case begins with \(n \). Follow \(n \) pairs of real numbers \(x \ y \) giving the coordinates of the points of the polygon, either in clockwise or in anticlockwise order. Assume \(3 \leq n \leq 100 \).

Output

For every given polygon, print the cost of its cheapest triangulation with four digits after the decimal point. The input cases have no precision issues.

<table>
<thead>
<tr>
<th>Sample input</th>
<th>Sample output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 0 1 1 0</td>
<td>0.0000</td>
</tr>
<tr>
<td>4 0 0 2 0 2 0 1</td>
<td>2.2361</td>
</tr>
<tr>
<td>5 -1.2 3 0 4 1 2.7 1 -1 0 -0.5</td>
<td>5.5730</td>
</tr>
</tbody>
</table>

Problem information

Author : Salvador Roura
Generation : 2013-09-20 15:20:01

http://www.jutge.org