
Cheapest triangulation

P65751_en

Given a simple polygon with n vertices, there is always at least one way to decompose it in triangles by adding $n - 3$ diagonals. For instance, these are three of the many triangulations of the same polygon:

Define the cost of a triangulation as the sum of the lengths of the diagonals that have been added. Given a *convex* polygon, what is the cost of its cheapest triangulation?

Input

Input consists of several cases. Every case begins with n . Follow n pairs of real numbers x y giving the coordinates of the points of the polygon, either in clockwise or in anticlockwise order. Assume $3 \leq n \leq 100$.

Output

For every given polygon, print the cost of its cheapest triangulation with four digits after the decimal point. The input cases have no precision issues.

Sample input 1	Sample output 1
3 0 0 0 1 1 0	0.0000
4 0 0 2 0 2 2 0 1	2.2361
5 -1.2 3 0 4 1 2.7 1 -1 0 -0.5	5.5730

Sample input 1

```
3 0 0 0 1 1 0
4 0 0 2 0 2 2 0 1
5 -1.2 3 0 4 1 2.7 1 -1 0 -0.5
```

Sample output 1

```
0.0000
2.2361
5.5730
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T11:25:50.410Z

© Jutge.org, 2006–2026.

<https://jutge.org>