The Virtual Learning Environment for Computer Programming

Cheapest triangulation

P65751_en

Given a simple polygon with n vertices, there is always at least one way to decompose it in triangles by adding n-3 diagonals. For instance, these are three of the many triangulations of the same polygon:

Define the cost of a triangulation as the sum of the lengths of the diagonals that have been added. Given a *convex* polygon, what is the cost of its cheapest triangulation?

Input

Input consists of several cases. Every case begins with n. Follow n pairs of real numbers x y giving the coordinates of the points of the polygon, either in clockwise or in anticlockwise order. Assume $3 \le n \le 100$.

Output

For every given polygon, print the cost of its cheapest triangulation with four digits after the decimal point. The input cases have no precision issues.

Sample input												Sample output
3	0 0	0	1	1	0							0.0000 2.2361
4	0 0	2	0	2	2	0	1					2.2361
5	-1 '	2 3	Ο	4	1	2	7	1 –1	Ω	-0 5		5 5730

Problem information

Author: Salvador Roura

Generation: 2013-09-20 15:20:01

© *Jutge.org*, 2006–2013. http://www.jutge.org