Jutge.org

The Virtual Learning Environment for Computer Programming

Monic irreducible polynomials

Setè Concurs de Programacio de la UPC - Final (2009-09-16)
Here, we consider polynomials in $\mathbb{F}_{p}[x]$, that is, polynomials on x whose coefficients are elements of $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$, where p is a prime number.
A polynomial is monic if the coefficient of its term with largest degree is 1 . A polynomial is irreducible if it cannot be written as the product of two polynomials of smaller degree. Your task is to count the number of monic, irreducible polynomials of $\mathbb{F}_{p}[x]$ of a given degree d.
Too difficult? Do not despair! The problem is not so hard, once you know that, in $\mathbb{F}_{p}[x]$, every monic polynomial can be written in a unique way as a factor of monic, irreducible polynomials. For instance, in $\mathbb{F}_{2}[x]$ there are 4 monic polynomials of degree 2 (in $\mathbb{F}_{2}[x]$, all polynomials are monic), but only one of them is irreducible:

$$
x^{2}=x \cdot x \quad x^{2}+1=(x+1) \cdot(x+1) \quad x^{2}+x=x \cdot(x+1) \quad x^{2}+x+1=? ? ?
$$

In $\mathbb{F}_{2}[x]$, there are 8 monic polynomials of degree 3, but only two of them are irreducible:

$$
\begin{aligned}
x^{3} & =x \cdot x \cdot x & x^{3}+x^{2} & =x \cdot x \cdot(x+1) \\
x^{3}+1 & =(x+1) \cdot\left(x^{2}+x+1\right) & x^{3}+x^{2}+1 & =? ? ? \\
x^{3}+x & =x \cdot(x+1) \cdot(x+1) & x^{3}+x^{2}+x & =x \cdot\left(x^{2}+x+1\right) \\
x^{3}+x+1 & =? ? ? & x^{3}+x^{2}+x+1 & =(x+1) \cdot(x+1) \cdot(x+1)
\end{aligned}
$$

Input

Input consists of several cases, each with a prime number $2 \leq p \leq 30$ and an integer number $2 \leq d \leq 30$. Additionally, we have $p^{d}<10^{9}$.

Output

For every case, print the number of monic, irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d.

Sample input

2
3
4
30
2
3
4
319
296

```
Sample output
1
2
35790267
3
18
61171656
99133020
```


Problem information

Author: Omer Giménez
Generation : 2013-09-02 15:41:11
© Jutge.org, 2006-2013.
http://www.jutge.org

