

Monic irreducible polynomials

P64196_en

Here, we consider polynomials in $\mathbb{F}_p[x]$, that is, polynomials on x whose coefficients are elements of $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$, where p is a prime number.

A polynomial is *monic* if the coefficient of its term with largest degree is 1. A polynomial is *irreducible* if it cannot be written as the product of two polynomials of smaller degree. Your task is to count the number of monic, irreducible polynomials of $\mathbb{F}_p[x]$ of a given degree d .

Too difficult? Do not despair! The problem is not so hard, once you know that, in $\mathbb{F}_p[x]$, *every* monic polynomial can be written in a unique way as a factor of monic, irreducible polynomials. For instance, in $\mathbb{F}_2[x]$ there are 4 monic polynomials of degree 2 (in $\mathbb{F}_2[x]$, all polynomials are monic), but only one of them is irreducible:

$$x^2 = x \cdot x \quad x^2 + 1 = (x + 1) \cdot (x + 1) \quad x^2 + x = x \cdot (x + 1) \quad x^2 + x + 1 = \text{??}$$

In $\mathbb{F}_2[x]$, there are 8 monic polynomials of degree 3, but only two of them are irreducible:

$x^3 = x \cdot x \cdot x$	$x^3 + x^2 = x \cdot x \cdot (x + 1)$
$x^3 + 1 = (x + 1) \cdot (x^2 + x + 1)$	$x^3 + x^2 + 1 = \text{??}$
$x^3 + x = x \cdot (x + 1) \cdot (x + 1)$	$x^3 + x^2 + x = x \cdot (x^2 + x + 1)$
$x^3 + x + 1 = \text{??}$	$x^3 + x^2 + x + 1 = (x + 1) \cdot (x + 1) \cdot (x + 1)$

Input

Input consists of several cases, each with a prime number $2 \leq p \leq 30$ and an integer number $2 \leq d \leq 30$. Additionally, we have $p^d < 10^9$.

Output

For every case, print the number of monic, irreducible polynomials in $\mathbb{F}_p[x]$ of degree d .

Sample input 1

```
2 2
2 3
2 4
2 30
3 2
3 3
3 4
3 19
29 6
```

Sample output 1

```
1
2
3
35790267
3
8
18
61171656
99133020
```

Problem information

Author: Omer Giménez

Generation: 2026-01-25T11:19:42.236Z

© Jutge.org, 2006–2026.

<https://jutge.org>