
Solar rocket**P64151_en**

At a planet far away, an alien civilization is developing a rocket that works with solar energy. Assume this simplified model: The rocket is a point that moves vertically. Due to gravity, there is a constant downward acceleration of a everywhere. At the rocket location, there are h hours of daytime, followed by h hours of nighttime, followed by h hours of daytime, etc. During the daytime hours, the solar engines of the rocket provide an upward acceleration of b . Will the rocket reach a vertical distance of d ? If so, can you compute the first time to reach that point?

Input

Input consists of several cases, each with a , b , h and d . Assume that a and b are real numbers such that $1 \leq a < b \leq 10$, that h is an integer number between 1 and 20, that d is an integer number between 1 and 10000, and that all the units used are km and hours.

Output

For every case, print “never” if the rocket will never reach height d . Otherwise, print the minimum time to reach that height, with four digits after the decimal point. The input cases have no precision issues, nor ill-conditioned cases. With the given cases, the answer will never be larger than 200 hours.

Sample input 1

```
1 4 3 10
1 4 3 1000
2 5 7 10000
3.1 5.3 12 2000
3.1 5.3 12 200
6.15 9.95 19 1024
3.12 5.96 19 1481
```

Sample output 1

```
2.5820
41.8100
183.3596
never
13.7570
25.4604
59.0880
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T11:19:22.869Z

© Jutge.org, 2006–2026.
<https://jutge.org>