Using the definitions

```cpp
typedef vector<int> VI;
typedef vector<VI> VVI;
```

implement a function

```cpp
int k_esim(int k, const VVI& V);
```

to return the k-th global element (starting at one) of the elements in the vector of vectors V.

Let $n = V.size()$. For every $0 \leq i < n$, $V[i]$ is sorted increasingly. Furthermore, there are no repeated elements in V.

For example, if $k = 5$, $n = 3$, and the three vectors are

$V[0]$	1	2	10	15	
$V[1]$	-5	-3	12		
$V[2]$	0	3	4	6	20

then the answer is 2, which is the fifth smallest element inside all the vectors.

Let $m = \sum_{i=0}^{n-1} V[i].size()$. Assume that k is between 1 and m, that n is between 2 and 500, and that some $V[i]$ can be empty. If needed, you can implement auxiliary procedures. Take into account that, for the “large” test cases, $k = \Theta(n)$ and $m = \Theta(n^2)$. The expected solution in this case has cost $\Theta(n \log n)$.

Observation

You only need to submit the required procedure; your main program will be ignored.