Jutge.org

The Virtual Learning Environment for Computer Programming

Two coins of each kind (1)

Examen parcial d'Algorísmia, FME (2014-11-14)
Given a natural number x and n different coin values $c_{1} \ldots c_{n}$, compute in how many ways it is possible to achieve change x by using each value at most twice. Here, two coins with the same value are considered different.
For example, if $x=4$ and the available values are 1 and 2 , then there are three ways to achieve it: $1+1^{\prime}+2,1+1^{\prime}+2^{\prime}$, and also $2+2^{\prime}$.

Input

Input consists of several cases. Every case begins with x and n, followed by $c_{1} \ldots c_{n}$. Assume $1 \leq n \leq 20,1 \leq c_{i} \leq x \leq 1000$, and that all c_{i} are different.

Output

For every case print, in lexicographic order, all possible ways to exactly achieve change x by using each value at most twice. Print every solution with its values sorted from small to big. In doing that, assume $1<1^{\prime}<2<2^{\prime}<\ldots$. Use " 1 p" to print 1^{\prime}, etcetera. Print a line with 10 dashes at the end of every case.

Hint

A simply pruned backtracking should be enough.

Sample input

```
4 2 1 2
400 1 200
400 1 300
5
```



```
Sample output
```

$4=1+1 p+2$
$4=1+1 p+2 p$
$4=2+2 p$

$400=200+200 p$

$5=1+2+2 p$
$5=1+4$
$5=1+4 p$
$5=1 p+2+2 p$
$5=1 p+4$
$5=1 p+4 p$
$5=1+1 p+3$
$5=1+1 p+3 p$
$5=1+2+2 p$
$5=1+4$
$5=1+4 p$
$5=1 p+2+2 p$
$5=1 p+4$
$5=1 p+4 p$
$5=2+3$
$5=2+3 p$
$5=2 p+3$
$5=2 p+3 p$
$5=5$
$5=5 p$

Problem information

Author : Salvador Roura
Translator : Albert Atserias
Generation : 2014-12-08 15:47:40
© Jutge.org, 2006-2014.
http://www.jutge.org

