Jutge.org

The Virtual Learning Environment for Computer Programming

Sink the fleet P61920 en

(Who has never played to ships with the mate of your side during one of those programming
contests in which nothing turns out? OIE, despite what might seem, is a serious competition:
we are going to give you the opportunity to play to ships... against the computer.

In this problem your program will play to sink the fleet. Unlike other problems, the input
that your program will receive will be interactive: your program will print a square where to
attack, and it will receive an answer

In a sink the fleet game, there is a rectangular map of R by C squares where ships of different
size are randomly distributed . A ship is a row or a column of ¢ consecutive squares, where ¢
is from 1 (coast guards) to 5 (aircraft carriers). Two squares of different ships will never be
in touch sharing an edge they can be in touch sharing a point, that is, diagonally placed one
respect the other one). Your program knows how many ships of each kind there are, but it
does not know where are placed. Your aim is to sink all of them. To sink a ship is necessary
to damage all its squares.

In each turn, your program has the right to do an attack over any of the squares, writing its
coordenates. In return, it will receive one of the three possible answer in its input: WATER (if
the square is empty), TOUCHED (if the square is occupied by a ship that still has none touched
squares) or SUNK (if the square is occupied by a ship which squares have been touched). For
instance, if you sink a ship of n squares with n attacks, your program will receive n—1 answers
of TOUCHED and a answer of SUNK; if you attack again any of the squares of the same ship
you will receive the message of SUNK.

Input

Various test boards exist, all of them with different sizes and number of ships. A test data
start with the number N of boards.

For each board, you must read the numbers R and C in a line (the number of rows and
columns of the board) followed by a second line with exactly 5 numbers: the quantities c; of
ships of size 7, for i from 1 to 5. Since that moment the input that it receives will depend on
your attacks. When your program has sunk all the ships, it must print SUNK in the output,
and start to read the following board. When it has finished the number of boards N, your
program must finish.

Output

Your program must print each attack in a line, with the coordenates i and j of the attack,
separated by a space, being fulfilled that 0 < i < Fand 0 < j < C. Print END, also in a line,
when you detect that there are not more ships.

Observation

You will be able to use a simulator and various instance boards to check yourself your pro-
gram. We also offer you and instance of an extremely silly player (tonto.cc) in order to
have a code instance. You can base on the intance to write your program. To try an exe-
cutable jug.x with the boards that we give you, write . /prueba jug.x. You will receive
as answer the number of turns that your program takes to print END for each test data. If



your program has printed END before sinking all the ships, or if it has printed a square out
of the board, it will appear WA (wrong answer) in the simulator. Check that your program
does not take more than 10 seconds to solve the test data.

Score:

The system of puntuation of this exercise is different to the others. Only one sending will
be allowed. The score of the problem will not be known until the next day, because it not
depends only on your program, but also of the other contestants. When you have your pro-
gram ready, you must send it to the judge. You can only do a sending; ignore the answer
that the on-line judge gives you.

It will receive more points who obtains more chiqui-points overcoming particular test data,
of different sizes and number of ships. All the program will have to overcome the same test
data. For each test data overcomed we will give you chiqui-points. A program that, during
the execution of a test data, attacks a none existing square or prints END before time will not
receive any chiqui-point for the test data where it fails. The program that takes more turns to
sink the ships of a test data will receive a chiqui-point; the next one, two; and this way to the
most efficient. In a event of a tie, all the drawn programs will receive the maximal number
of chiqui-points that they could receive. For instance, if 3 programs draw in the last position,
the 3 of all will receive 3 chiqui-points; the following one will receive 4 chiqui-points (if it is
not drawn), etc.

In the end, the points of the problem will be distributed in the following way,

i—1
puntos = {100- (1— N )],

where N is the number of solutions that are received and i is the position that occupies in the
accumulated classification of chiqui-points; that is, the first classified will receive 100 points,
and the other classifieds will receive points proportionally to their position. In a event of a
tie, the same criterion than before will be applied to share the points. The classification and
the score will published the next day.

Author: Javi Gémez

Problem information

Author: Omer Giménez
Translator: Carlos Molina

Generation: 2026-01-25T11:11:03.6692

© Jutge.org, 2006-2026.
https://jutge.org


https://jutge.org

