In this problem, given any natural number \(x \) with \(n \) digits \(x_1 \ldots x_n \), we say that \(y = y_1 \ldots y_n \) is the result of fattening \(x \) if, for every \(i \) between 1 and \(n \), \(y_i = \max\{x_1, \ldots, x_i\} \). For instance, if we fatten 7 we get 7, if we fatten 32064781 we get 33366788, and if we fatten 9000000 we get 9999999.

Write a function

\[
\text{int fatten (int x);} \\
\]

to return the result of fattening \(x \). You may implement and use auxiliary procedures.

Precondition

It holds \(0 < x < 10^n \).

Observation

You only need to submit the required procedure; your main program will be ignored.