Jutge.org

The Virtual Learning Environment for Computer Programming

Haskell — Parcial 2017-12-04 P48366_ca

Problema 1: Expressi6 postfixa 1

Escriviu una funci6 evall :: String — Int que avalui una expressié postfixa que es troba en
una string. Els elements en l'expressié sén valors (nombres naturals) i els operadors de
suma, resta, producte i divisi6. Els elements es separen per espais. Per exemple, ’avaluacié
de"15 1 2 + 24 * + 3 -"és84.

La soluci6é canonica per evaluar expressions postfixes és utilitzar una pila: Comengant per
una pila buida, es processen els elements de I'expressié d’esquerra a dreta. Si l’element és
un valor, s’empila. Sil’element és un operador, es desempilen dos valors, s'operen d’acord
amb l'operador i s’empila el resultat. Al final, la pila conté un sol element, que és el resultat
de I'evalaucié de I'expressio.

Podeu suposar que no hi ha mai errors a I’expressié ni divisions per zero.

Solucioneu el problema recursivament. La funcié words us pot ser ttil.

Problema 2: Expressi6 postfixa 2

Escriviu una funci6 eval2 :: String — Int que avalui una expressi6 postfixa com al Problema 1,
pero sense utilitzar recursivitat.

Problema 3: fsmap

Definiu una funci6 fsmap ::a — [a — a] — a que, donats un element x de tipus 4 i una llista fs
de funcions de tipus a — a, fa que fsmap x fs retorni l’aplicaci6é (d’esquerra a dreta) de totes
les funcions de fs a x. Es valora com de succinta és la vostra solucié.

Problema 4: Dividir i véncer
Escriviu una funcié d’ordre superior que definixi I’esquema de dividir i véncer i utilitzeu-la
per fer l'algorisme de quicksort per a llistes d’enters.
La funcié per dividir i véncer ha de tenir aquesta interficie:
divideNcongquer :: (a —» Maybe b) - (a — (a,a)) - (a - (a,a) - (b,b) - b) »a—->1D
on a és el tipus del problema, b és el tipus de la soluci6, i divideNconquer base divide conquer x

utilitza:

e base :: (1 —» Maybe b) per obtenir la soluci6 directa per a un problema si és trivial (quan
és un Just b) o per indicar que no és trivial (quan és Nothing).

e divide :: (a — (a,a)) per dividir un problema no trivial en un parell de subproblemes
més petits.

o conquer :: (a — (a,a) — (b, b) — b) per, donat un problema no trivial, els seus subprob-
lemes i les seves respectives subsolucions, obtenir la solucié al problema original.

e x :a denota el problema a solucionar.

La funci6 pel quicksort ha de ser quickSort :: [Int] — [Int] i ha d’utilitzar divideNconquer.

Problema 5: Racionals

Definiu un tipus Racional per manipular nombres racionals positius amb operacions per:

e construir un racional a través d’un numerador i d’un denominador naturals,
e obtenir el numerador de la seva forma simplificada,
e obtenir el denominador de la seva forma simplificada.

A més, feu que Racional pertanyi a la classe Eq i a la classe Show, fent que els racionals es
mostrin de la forma "x/y”.
Seguiu aquesta interficie:

data Racional = ...

racional :: Integer — Integer — Racional
numerador :: Racional — Integer
denominador :: Racional — Integer

Si voleu, podeu utilitzar la funcié estandard ged que retorna el maxim comu divisor de dos
naturals.

Problema 6: Arbre de Calkin-Wilf

L'arbre de Calkin-Wilf és un arbre binari que representa tots els racionals positius. L'arbre
té com arrel el racional 1/1 i, qualsevol node a/b té dos fillsa/(a + b) i (a + b) /b.

Aquests son els primers nivells de 1’arbre de Calkin-Wilf: [figura extreta de Wikipedia]

PN

1/2 2/1

/N 7\

1/3 3/2 2/3 3/1

/NN N

ANAAAN AN

Escriviu una funci6 racionals :: [Racional] que retorni la llista infinita de tots els nombres
racionals positius segons 'ordre de 1’arbre de Calkin-Wilf.

Per a fer-ho, utilitzeu el tipus Racional del problema anterior. També podeu aprofitar les
definicions generiques d’arbre infinit i del seu recorregut per nivells que es donen a contin-
uacio:

data Tree a = Node a (Tree a) (Tree a)
recXnivells :: Tree a — [a]
recXnivells t = recXnivells' [t]

where recXnivells' ((Node x fe fd):ts) = x:recXnivells' (ts ++ [fe, fd])

Important

El problema té diferents apartats. Cada apartat val 2 punts sobre 10 (pero el Jutge en suma

12). Heu de resoldre 5 dels 6 apartats (no els 6!).

Exemple d’entrada 1

evall "15 1 2 + 24 * + 3 ="
evall "66"

evall "6 2 -"

evall "7 2 /"

evall "3 4 + 2 /"

Exemple d’entrada 2

eval2 "15 1 2 + 24 * + 3 ="
eval2 "66"

eval2 "6 2 ="

eval2 "7 2 /"

eval2 "3 4 + 2 /"

Exemple d’entrada 3

fsmap 3 [(+2), (*3), (+4)]
fsmap "o" [(++"la"), (:)'h', (+#+"!")]
fsmap False []

Exemple d’entrada 4

quickSort [5, 3, 2, 3, 4, 1]

Exemple d’entrada 5

numerador (racional 1 2)
denominador (racional 1 2)
numerador (racional 2 4)
denominador (racional 2 4)
racional 1 2

racional 2 4

racional 1 2 == racional 2 4
racional 1 2 == racional 1 3

Exemple d’entrada 6

take 10 racionals

Informacié del problema
Autoria: Jordi Petit
Generaci6: 2026-02-03T17:06:08.833Z

© Jutge.org, 2006-2026.
https:/ /jutge.org

Exemple de sortida 1

84
66
4
3
3

Exemple de sortida 2

84
66
4
3
3

Exemple de sortida 3

19
"hola!"
False

Exemple de sortida 4

[1,2,3,3,4,5]

Exemple de sortida 5

[SR

2

1/2
1/2
True
False

Exemple de sortida 6

(1/1,1/2,2/1,1/3,3/2,2/3,3/1,1/4,4/3,3/5]

https://jutge.org

