
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Parcial 2017-12-04 P48366_ca

Problema 1: Expressió postfixa 1
Escriviu una funció eval1 :: String → Int que avalui una expressió postfixa que es troba en
una string. Els elements en l’expressió són valors (nombres naturals) i els operadors de
suma, resta, producte i divisió. Els elements es separen per espais. Per exemple, l’avaluació
de "15 1 2 + 24 * + 3 -" és 84.
La solució canònica per evaluar expressions postfixes és utilitzar una pila: Començant per
una pila buida, es processen els elements de l’expressió d’esquerra a dreta. Si l’element és
un valor, s’empila. Si l’element és un operador, es desempilen dos valors, s’operen d’acord
amb l’operador i s’empila el resultat. Al final, la pila conté un sol element, que és el resultat
de l’evalaució de l’expressió.
Podeu suposar que no hi ha mai errors a l’expressió ni divisions per zero.
Solucioneu el problema recursivament. La funció words us pot ser útil.

Problema 2: Expressió postfixa 2
Escriviu una funció eval2 :: String → Int que avalui una expressió postfixa comal Problema 1,
però sense utilitzar recursivitat.

Problema 3: fsmap
Definiu una funció fsmap :: a → [a → a] → a que, donats un element x de tipus a i una llista fs
de funcions de tipus a → a, fa que fsmap x fs retorni l’aplicació (d’esquerra a dreta) de totes
les funcions de fs a x. Es valorà com de succinta és la vostra solució.

Problema 4: Dividir i vèncer
Escriviu una funció d’ordre superior que definixi l’esquema de dividir i vèncer i utilitzeu-la
per fer l’algorisme de quicksort per a llistes d’enters.
La funció per dividir i vèncer ha de tenir aquesta interfície:
divideNconquer :: (a → Maybe b) → (a → (a, a)) → (a → (a, a) → (b, b) → b) → a → b

on a és el tipus del problema, b és el tipus de la solució, i divideNconquer base divide conquer x
utilitza:

• base :: (a → Maybe b) per obtenir la solució directa per a un problema si és trivial (quan
és un Just b) o per indicar que no és trivial (quan és Nothing).

• divide :: (a → (a, a)) per dividir un problema no trivial en un parell de subproblemes
més petits.



• conquer :: (a → (a, a) → (b, b) → b) per, donat un problema no trivial, els seus subprob-
lemes i les seves respectives subsolucions, obtenir la solució al problema original.

• x :: a denota el problema a solucionar.

La funció pel quicksort ha de ser quickSort :: [Int] → [Int] i ha d’utilitzar divideNconquer.

Problema 5: Racionals
Definiu un tipus Racional per manipular nombres racionals positius amb operacions per:

• construir un racional a través d’un numerador i d’un denominador naturals,
• obtenir el numerador de la seva forma simplificada,
• obtenir el denominador de la seva forma simplificada.

A més, feu que Racional pertanyi a la classe Eq i a la classe Show, fent que els racionals es
mostrin de la forma ”𝑥/𝑦”.
Seguiu aquesta interfície:
data Racional = ...
racional :: Integer → Integer → Racional
numerador :: Racional → Integer
denominador :: Racional → Integer

Si voleu, podeu utilitzar la funció estàndard gcd que retorna el màxim comú divisor de dos
naturals.

Problema 6: Arbre de Calkin-Wilf
L’arbre de Calkin–Wilf és un arbre binari que representa tots els racionals positius. L’arbre
té com arrel el racional 1/1 i, qualsevol node 𝑎/𝑏 té dos fills 𝑎/(𝑎 + 𝑏) i (𝑎 + 𝑏)/𝑏.
Aquests són els primers nivells de l’arbre de Calkin–Wilf: [figura extreta de Wikipedia]

Escriviu una funció racionals :: [Racional] que retorni la llista infinita de tots els nombres
racionals positius segons l’ordre de l’arbre de Calkin–Wilf.
Per a fer-ho, utilitzeu el tipus Racional del problema anterior. També podeu aprofitar les
definicions genèriques d’arbre infinit i del seu recorregut per nivells que es donen a contin-
uació:



data Tree a = Node a (Tree a) (Tree a)
recXnivells :: Tree a → [a]
recXnivells t = recXnivells' [t]
where recXnivells' ((Node x fe fd):ts) = x:recXnivells' (ts ++ [fe, fd])

Important
El problema té diferents apartats. Cada apartat val 2 punts sobre 10 (però el Jutge en suma
12). Heu de resoldre 5 dels 6 apartats (no els 6!).

Exemple d’entrada 1
eval1 "15 1 2 + 24 * + 3 -"
eval1 "66"
eval1 "6 2 -"
eval1 "7 2 /"
eval1 "3 4 + 2 /"

Exemple de sortida 1
84
66
4
3
3

Exemple d’entrada 2
eval2 "15 1 2 + 24 * + 3 -"
eval2 "66"
eval2 "6 2 -"
eval2 "7 2 /"
eval2 "3 4 + 2 /"

Exemple de sortida 2
84
66
4
3
3

Exemple d’entrada 3
fsmap 3 [(+2), (*3), (+4)]
fsmap "o" [(++"la"), (:)'h', (++"!")]
fsmap False []

Exemple de sortida 3
19
"hola!"
False

Exemple d’entrada 4
quickSort [5, 3, 2, 3, 4, 1]

Exemple de sortida 4
[1,2,3,3,4,5]

Exemple d’entrada 5
numerador (racional 1 2)
denominador (racional 1 2)
numerador (racional 2 4)
denominador (racional 2 4)
racional 1 2
racional 2 4
racional 1 2 == racional 2 4
racional 1 2 == racional 1 3

Exemple de sortida 5
1
2
1
2
1/2
1/2
True
False

Exemple d’entrada 6
take 10 racionals

Exemple de sortida 6
[1/1,1/2,2/1,1/3,3/2,2/3,3/1,1/4,4/3,3/5]

Informació del problema
Autoria: Jordi Petit

Generació: 2026-02-03T17:06:08.833Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

