Jutge.org

The Virtual Learning Environment for Computer Programming

Optimal trip

Vint-i-dosè Concurs de Programació de la UPC - Semifinal (2024-06-27)
You are planning a trip on a straight road where locations are defined by its distance to some reference point. The trip will start at x_{1}, it will pass through points x_{2}, \ldots, x_{n-1} in this order, and it will end at x_{n}, with $x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}$. You will make exactly two stops, say at points x_{i} and x_{j}, with $1<i<j<n$. You want to make the three distances $x_{i}-x_{1}, x_{j}-x_{i}$ and $x_{n}-x_{j}$ as similar as possible. More precisely, your goal is to minimize the difference between the maximum and the minimum of those three distances.
For instance, supose a travel defined with 410233242 50. Here, the optimal choice is to stop at 23 and 32 , which gives the distances $23-4=19,32-23=9$ and $50-32=18$. In this case, the difference is $19-9=10$. It is easy to see that we cannot make the difference smaller by choosing two other stopping points.

Input

Input consists of several cases. Each case starts with n, followed by x_{1}, \ldots, x_{n}. You can assume $4 \leq n \leq 10^{5}$, and $0 \leq x_{1}<x_{2}<\cdots<x_{n-1}<x_{n} \leq 10^{9}$.

Output

For every case, print the minimum difference if we choose the optimal stops.

Sample input

$\begin{array}{lllllll}6 & 4 & 10 & 23 & 32 & 42 & 50\end{array}$
402000000007000000001000000000
$5 \quad 100000240000 \quad 300000 \quad 500000700000$

```
Sample output
10
300000000
0
```


Problem information

Author : Salvador Roura
Generation : 2024-06-27 09:52:42
© Jutge.org, 2006-2024.
https://jutge.org

