
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Expressions lògiques P41359_ca

Considereu aquesta definició de tipus per a expressions lògiques amb variables o valors
booleans a les fulles:
data LogicExpression
= Or LogicExpression LogicExpression
| And LogicExpression LogicExpression
| Not LogicExpression
| Var String
| Val Bool

1. Feu que LogicExpression sigui instància de Show de forma que les expressions com-
postes apareguin totalment parentitzades en forma infixa, tot seguint el format dels
exemples.

2. Feu una funció pushNegations :: LogicExpression → LogicExpression que, donada una ex-
pressió lògica, retorni una expressió lògica equivalent en la que les negacions només
apareguin aplicades a variables i que elimini les dobles negacions consecutives.

3. Escriviu un llista infinita bits :: [[[Int]]] que contingui totes les llistes d’𝑛 bits per a tota
𝑛 ≥ 0. No podeu fer servir recursivitat ni importar cap llibreria. Penseu en l’operador
<∗> de les llistes considerades com a aplicatius. S’espera una solució extremadament
concisa. (Aquest apartat és independent dels anteriors.)

El Jutge dóna puntacions parcials per cada apartat: un punt per cada joc de proves públic i
un punt per cada joc de proves privat. La puntuació del problema per part del professor és
independent d’aquesta puntuació.

Exemple d’entrada 1
Val False
Val True
Var "a"
And (Val True) (Var "b")
And (Val False) (Val False)
Or (And (Val True) (Var "x")) (Not (Or (Var "y") (Var "x")))
Not (Or (And (Val True) (Var "x")) (Not (Or (Var "y") (Var "x"))))

Exemple de sortida 1
0
1
a
(1 and b)
(0 and 0)
((1 and x) or (not (y or x)))
(not ((1 and x) or (not (y or x))))



Exemple d’entrada 2
pushNegations $ Val True
pushNegations $ Var "x"
pushNegations $ Not (Val True)
pushNegations $ And (Val True) (Var "x")
pushNegations $ Or (And (Val True) (Var "x")) (Not (Or (Var "y") (Var "x")))
pushNegations $ Not (Or (And (Val True) (Var "x")) (Not (Or (Var "y") (Var "x"))))
pushNegations $ Not $ Not $ Not $ Var "a"

Exemple de sortida 2
1
x
0
(1 and x)
((1 and x) or ((not y) and (not x)))
((0 or (not x)) and (y or x))
(not a)

Exemple d’entrada 3
take 3 bits
bits !! 0
bits !! 1
bits !! 2
bits !! 3
bits !! 4
take 16 $ map length bits

Exemple de sortida 3
[[[]],[[0],[1]],[[0,0],[0,1],[1,0],[1,1]]]
[[]]
[[0],[1]]
[[0,0],[0,1],[1,0],[1,1]]
[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]]
[[0,0,0,0],[0,0,0,1],[0,0,1,0],[0,0,1,1],[0,1,0,0],[0,1,0,1],[0,1,1,0],[0,1,1,1],[1,0,0,0],[1,0,0,1],[1,0,1,0],[1,0,1,1],[1,1,0,0],[1,1,0,1],[1,1,1,0],[1,1,1,1]]
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

Informació del problema
Autoria: Jordi Petit

Generació: 2026-02-03T17:01:52.271Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

