Jutge.org

The Virtual Learning Environment for Computer Programming

Barcelona's trams

Segon Concurs de Programació de la UPC - Final (2004-09-29)
Quite recently, the City of Barcelona has included trams to its "efficient" public transport. As expected, the result has been a nice set of accidents of outstanding originality and beauty. But diminishing aesthetic reasons, the Mayor of Barcelona has decided to reduce the delay caused by the accidents. After a thorough study the following model has been established.
Every tram must go from an initial point P_{0} to a final point P_{n} visiting the intermediate points P_{1}, \ldots, P_{n-1} in this order. For every $1 \leq i \leq n$, let S_{i} be the section that goes from P_{i-1} to P_{i}. Every such section must be travelled at uniform speed v_{i}, which is chosen by the driver at P_{i-1}. Let M_{i} be the maximum possible speed of the tram at S_{i}, and assume that the chosen speed is $0<v_{i} \leq M_{i}$. Then the probability of crashing in S_{i} is v_{i} / M_{i}. When a crash happens, the tram uses an efficient recovery system that lasts only 10 seconds. Afterwards, the tram reaches P_{i} using an auxiliary (slow but safe) engine, which provides a speed of 5 meters per second and guarantees no more crashes in S_{i}.
For instance, assume that the section length is 300 meters, and that the current maximum speed is 25 meters per second. If the driver chooses to travel at $25 \mathrm{~m} / \mathrm{s}$, the tram will crash for sure. Since this can happen anywhere between P_{i-1} and P_{i}, for the sake of computation we can assume that it will take place exactly in the middle point (after 150 meters). Therefore, on the average the tram will spend 6 seconds to reach the middle point, 10 seconds to recover from the crash, and 30 seconds to reach P_{i}, for a total of 46 seconds. By contrast, if the tram starts traveling at $15 \mathrm{~m} / \mathrm{s}$, with probability 0.6 it will crash and spend $10+10+30=50$ seconds, and with probability 0.4 it will reach P_{i} after 20 seconds without any crash. The average time in this case is thus just $0.6 * 50+0.4 * 20=38$ seconds.
When the tram reaches every P_{i}, it stops for a few seconds regardless of having crashed in S_{i} or not; these few seconds (for simplicity, we consider them to be 0) are enough to (almost) repair the tram: the maximum speed reduces by $1 \mathrm{~m} / \mathrm{s}$ after every crash. In other words, if we call the initial maximum speed M_{0}, then we have $M_{i}=M_{0}-C_{i}$, where $0 \leq C_{i} \leq i-1$ is the total number of crashes suffered in S_{1}, \ldots, S_{i-1}.
Write a program to print the optimal average travel time given the initial maximum speed and the length of every section.

Input

Input consists of several cases, each one with M_{0} (a real number between 5 and 1000), n (an integer number between 1 and $M_{0}-1$), and the length of every section (each one a real number between 100 and 1000).

Output

For every case, print the optimal average travel time with four digits after the decimal point. The input cases have no precision issues.
Sample input

25	1	900	
25	2	900	900
25	2	305.15	980.76
5	1	1000	

Sample output
102.0000
205.0303
150.0000
210.0000

Problem information

Author: Salvador Roura
Generation : 2013-10-01 12:16:33
© Jutge.org, 2006-2013.
http://www.jutge.org

