
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Binary tree P37072_en

In this problem you have to write several functions for generic binary trees. The definition
of the trees is given by:
data Tree a = Node a (Tree a) (Tree a) | Empty deriving (Show)

That is, a tree with elements of type 𝑎 is, either an empty tree, either a node with an element
(of type 𝑎) and two other trees of the same type. The deriving (Show) statement simply
enables an visualization of trees.

1. Write a function size :: Tree a → Int that, given a tree, returns its size, that is, the number
of node it contains.

2. Write a function height :: Tree a → Int that, given a tree, returns its height, assuming that
empty trees have zero height.

3. Write a function equal :: Eq a ⇒ Tree a → Tree a → Bool that, given two trees, tellswhether
they are the same.

4. Write a function isomorphic :: Eq a ⇒ Tree a → Tree a → Bool that, given two trees, tells
whether they are isomorphic, that is, if one can obtain one from the other flipping some
of its descendants.

5. Write a function preOrder :: Tree a → [a] that, given a tree, return its pre-order traversal.

6. Write a function postOrder :: Tree a → [a] that, given a tree, return its post-order traver-
sal.

7. Write a function inOrder :: Tree a → [a] that, given a tree, return its in-order traversal.

8. Write a function breadthFirst :: Tree a → [a] that, given a tree, return its traversal by lev-
els.

9. Write a function build :: Eq a ⇒ [a] → [a] → Tree a that, given a pre-order traversal of a
tree and an in-order traversal of the same tree, returns the original tree. You can assume
that the three has no repeated elements.

10. Write a function overlap :: (a → a → a) → Tree a → Tree a → Tree a that, given two trees,
returns its overlapping using a function. Overlapping two treeswith a function consists
in placing the two trees one on the other and combine the double nodes using the given
function.

Scoring
Each function scores 10 points.



Sample input 1
let t7 = Node 7 Empty Empty
let t6 = Node 6 Empty Empty
let t5 = Node 5 Empty Empty
let t4 = Node 4 Empty Empty
let t3 = Node 3 t6 t7
let t2 = Node 2 t4 t5
let t1 = Node 1 t2 t3
let t1' = Node 1 t3 t2
size t1
height t1
equal t2 t3
isomorphic t1 t1'
preOrder t1
postOrder t1
inOrder t1
breadthFirst t1
build [1,2,4,5,3] [4,2,5,1,3]
overlap (+) t2 t3
overlap (+) t1 t3

Sample output 1
7
3
False
True
[1,2,4,5,3,6,7]
[4,5,2,6,7,3,1]
[4,2,5,1,6,3,7]
[1,2,3,4,5,6,7]
Node 1 (Node 2 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 3 Empty Empty)
Node 5 (Node 10 Empty Empty) (Node 12 Empty Empty)
Node 4 (Node 8 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 10 (Node 6 Empty Empty) (Node 7 Empty Empty))

Problem information
Author: Jordi Petit
Translator: Jordi Petit

Generation: 2026-02-03T17:09:40.357Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

