Jutge.org

The Virtual Learning Environment for Computer Programming

Haskell — Binary tree P37072_en

In this problem you have to write several functions for generic binary trees. The definition
of the trees is given by:

data Tree a = Node a (Tree a) (Tree a) | Empty deriving (Show)

That is, a tree with elements of type a is, either an empty tree, either a node with an element
(of type a) and two other trees of the same type. The deriving (Show) statement simply
enables an visualization of trees.

1.

10.

Write a function size :: Tree a — Int that, given a tree, returns its size, that is, the number
of node it contains.

Write a function height :: Tree a — Int that, given a tree, returns its height, assuming that
empty trees have zero height.

Write a function equal :: Eq a = Tree a — Tree a — Bool that, given two trees, tells whether
they are the same.

. Write a function isomorphic :: Eq a = Tree a — Tree a — Bool that, given two trees, tells

whether they are isomorphic, that is, if one can obtain one from the other flipping some
of its descendants.

Write a function preOrder :: Tree a — [a] that, given a tree, return its pre-order traversal.

Write a function postOrder :: Tree a — [a] that, given a tree, return its post-order traver-
sal.

Write a function inOrder :: Tree a — [a] that, given a tree, return its in-order traversal.

Write a function breadthFirst :: Tree a — [a] that, given a tree, return its traversal by lev-
els.

Write a function build :: Eqa = [a] — [a] — Tree a that, given a pre-order traversal of a
tree and an in-order traversal of the same tree, returns the original tree. You can assume
that the three has no repeated elements.

Write a function overlap :: (a » a — a) — Tree a — Tree a — Tree a that, given two trees,
returns its overlapping using a function. Overlapping two trees with a function consists
in placing the two trees one on the other and combine the double nodes using the given
function.

Scoring

Each function scores 10 points.



Sample input 1

let t7 Node 7 Empty Empty
let t6 Node 6 Empty Empty
let t5 Node 5 Empty Empty
let t4 Node 4 Empty Empty
let t3 Node 3 t6 t7

let t2 Node 2 t4 t5

let tl Node 1 t2 t3

let tl' = Node 1 t3 t2

size tl

height t1

equal t2 t3
isomorphic t1 t1'
preOrder tl
postOrder tl
inOrder tl
breadthFirst tl
build [1,2,4,5, 3]
overlap (+) t2 t3
overlap (+) tl t3

Sample output 1

(4,2,5,1,3]

(Node 4 Empty Empty)
Node 10 Empty Empty)
(Node 4 Empty Empty)

Problem information

Author: Jordi Petit
Translator: Jordi Petit

Generation: 2026-02-03T17:09:40.357Z

© Jutge.org, 2006-2026.
https://jutge.org

(Node 5 Empty Empty))
(Node 12 Empty Empty)
(Node 5 Empty Empty))

(Node 3 Empty Empty)

(Node 10

(Node 6 Empty Empty)

(Node 7


https://jutge.org

