
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Arbre binari P37072_ca

Aquest problema planteja l’escriptura de diverses funcions sobre arbres binaris genèrics. La
definició dels arbres ve donada per:
data Tree a = Node a (Tree a) (Tree a) | Empty deriving (Show)

És a dir, un arbre amb elements de tipus 𝑎 és, o bé un arbre buit, o bé un node que arrela un
element (de tipus a) amb dos altres arbres. La declaració deriving (Show) permet mostrar
els arbres senzillament.

1. Feu una funció size :: Tree a → Int que, donat un arbre, retorni la seva talla, és a dir, el
nombre de nodes que conté.

2. Feu una funció height :: Tree a → Int que, donat un arbre, retorni la seva alçada, assum-
int que els arbres buits tenen alçada zero.

3. Feu una funció equal :: Eq a ⇒ Tree a → Tree a → Bool que, donat dos arbres, indiqui si
són el mateix.

4. Feu una funció isomorphic :: Eq a ⇒ Tree a → Tree a → Bool que, donat un arbres, indiqui
si són el isomorfs, és a dir, si es pot obtenir l’un de l’altre tot girant algun dels seus fills.

5. Feu una funció preOrder :: Tree a → [a] que, donat un arbre, retorni el seu recorregut en
pre-ordre.

6. Feu una funció postOrder :: Tree a → [a] que, donat un arbre, retorni el seu recorregut
en post-ordre.

7. Feu una funció inOrder :: Tree a → [a] que, donat un arbre, retorni el seu recorregut en
in-ordre.

8. Feu una funció breadthFirst :: Tree a → [a] que, donat un arbre, retorni el seu recorregut
per nivells.

9. Feu una funció build :: Eq a ⇒ [a] → [a] → Tree a que, donat el recorregut en pre-ordre
d’un arbre i el recorregut en in-ordre delmateix arbre, retorni l’arbre original. Assumiu
que l’arbre no té elements repetits.

10. Feu una funció overlap :: (a → a → a) → Tree a → Tree a → Tree a que, donats dos arbres,
retorni la seva superposició utilitzant una funció. Superposar dos arbres amb una fun-
ció consisteix en posar els dos arbres l’un damunt de l’altre i combinar els nodes doble
resultants amb la funció donada o deixant els nodes simples tal qual.

Puntuació
Cada apartat puntua 10 punts.



Exemple d’entrada 1
let t7 = Node 7 Empty Empty
let t6 = Node 6 Empty Empty
let t5 = Node 5 Empty Empty
let t4 = Node 4 Empty Empty
let t3 = Node 3 t6 t7
let t2 = Node 2 t4 t5
let t1 = Node 1 t2 t3
let t1' = Node 1 t3 t2
size t1
height t1
equal t2 t3
isomorphic t1 t1'
preOrder t1
postOrder t1
inOrder t1
breadthFirst t1
build [1,2,4,5,3] [4,2,5,1,3]
overlap (+) t2 t3
overlap (+) t1 t3

Exemple de sortida 1
7
3
False
True
[1,2,4,5,3,6,7]
[4,5,2,6,7,3,1]
[4,2,5,1,6,3,7]
[1,2,3,4,5,6,7]
Node 1 (Node 2 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 3 Empty Empty)
Node 5 (Node 10 Empty Empty) (Node 12 Empty Empty)
Node 4 (Node 8 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 10 (Node 6 Empty Empty) (Node 7 Empty Empty))

Informació del problema
Autoria: Jordi Petit

Generació: 2026-02-03T17:09:45.093Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

