
Ivan the Terrible**P36895_en**

Given three integer numbers n , a and b , does there exist a natural t such that $a^t \equiv b \pmod{n}$?

Input

Input consists of the number of cases c , followed by c triples with n , a and b . You can assume $2 \leq n \leq 10^9$, $0 \leq a < n$, and $0 \leq b < n$. Additionally, assume $c \leq 200$ for the “hard private test cases”.

Output

For each case, print “YES” or “NO” depending on whether $a^t \equiv b \pmod{n}$ has at least one solution $t \geq 0$ or not.

Sample input 1

```
7
2 1 0
7 3 6
8 3 6
6 0 5
6 0 1
1000000000 42424242 1
1000000000 123456789 987654320
```

Sample output 1

```
NO
YES
NO
NO
YES
YES
NO
```

Problem information

Author: Ivan Geffner

Generation: 2026-01-25T10:31:09.812Z

© Jutge.org, 2006–2026.

<https://jutge.org>