
Maximum sum of paths**P36665_en**

You are given a tree with n nodes, where each edge has a positive cost. Let x and y be any two adjacent nodes. Define $p(x, y)$ as the maximum cost of all paths (with no repeated nodes) whose first step goes from x to y . Define $c(x)$ as the sum of $p(x, y)$ for all y adjacent to x . Please compute the maximum value of $c(x)$ among all nodes x .

Input

Input consists of several cases. Every case begins with the number of nodes n , followed by $n - 1$ edges, each one with two different nodes and the cost of the edge between them. Assume $2 \leq n \leq 10^5$. The nodes are numbered starting at zero. Each cost is an integer number between 1 and 1000. The given graph is always a tree. The number of steps between any two nodes is never larger than 1000.

Output

For every case, print the maximum $c(x)$, and how many nodes x achieve such a value.

Sample input 1

```
2 0 1 100
3 1 0 10 1 2 20
4 1 0 10 1 2 20 3 1 30
6 0 2 20 1 2 50 2 3 100 3 4 30 3 5 40
```

Sample output 1

```
100 2
30 3
60 1
220 1
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T10:29:38.845Z

© Jutge.org, 2006–2026.
<https://jutge.org>