Jutge.org

The Virtual Learning Environment for Computer Programming

Cycles

Dinovè Concurs de Programació de la UPC - Final (2021-09-22)

Given a directed graph with *n* vertices and *m* arcs, can you keep exactly *n* arcs (and remove the rest) in such a way that every vertex belongs to one cycle of the resulting graph?

Input

Input consists of several cases, each one with *n* and *m*, followed by *n* pairs *x y* to indicate an arc from *x* to *y*, with $x \neq y$. Assume $2 \leq n \leq 1000$, $n \leq m \leq 5n$, that vertices are numbered from 0 to n - 1, and that there are no repeated arcs.

Output

Print one line for every given graph. If there is no solution, print "no". Otherwise, print "yes" followed by the *n* chosen arcs in any order. If there is more than one solution, you can print any one. Follow strictly the format of the sample output.

Hint

Consider the max-flow problem.

Sample input

3	3										
0	1	1	2	2	0						
3	4										
0	1	1	2	2	1	1	0				
4	6										
0	2	2	1	1	3	3	0	2	0	3	1
4	6										
0	2	2	1	1	3	3	0	2	0	3	1

Sample output

yes	0	1	1	2	2	0		
no								
yes	0	2	1	3	2	1	3	0
yes	2	0	3	1	1	3	0	2

Problem information

Author : Salvador Roura Generation : 2024-04-30 20:09:45

© *Jutge.org*, 2006–2024. https://jutge.org