Jutge.org

The Virtual Learning Environment for Computer Programming

Minimizing the cost of a graph

P36054_en
Quart Concurs de Programació de la UPC - Final (2006-10-04)
Consider a connected, undirected multigraph G with labels at the edges. Define the cost of G as the sum of its labels. You must compute the minimum cost c that can be obtained after removing zero or more edges without disconnecting G. Among all the solutions that achieve $\operatorname{cost} c$, you must also compute the minimum number of remaining edges m, and the maximum number of remaining edges M.

For instance, consider these two graphs:

The minimum possible cost of the first graph is 8 , and there is just one way to achieve it, namely removing one of its seven edges: the $1-2$ edge. Thus $c=8, m=M=6$. As for the second graph, it is easy to see that $c=-6, m=2$, and $M=4$.

Input

Input is all integers, and consists of several descriptions of connected multigraphs. Every description starts with the number of vertices n and the number of edges e. Then follow e triples, one for every edge, with its two vertices and its label in this order. The vertices are numbered from 0 to $n-1$. Assume $0 \leq n \leq 10000$.

Output

For every given graph, output c, m and M in one line.

Sample input

```
6
```



```
4 5 -7 3 4 -5 3 5 -3
2
O
0 0
1 -3
0 -3
```


Problem information

Author : Salvador Roura
Generation : 2024-05-23 15:56:12
© Jutge.org, 2006-2024
https://jutge.org

