
Ork Island

Enric Rodrı́guez

December 19, 2017

1 Game rules

The power of Sauron, the Lord of the Rings, is spreading throughout Middle
Earth. People flee in terror from his bloodthirsty ork soldiers. As a result, once
prosperous cities are now abandoned, and vast areas of land have become as
lifeless as a desert. Sauron’s troops would quickly conquer all Middle Earth...
were it not for their own greed and ambition.

In this game, four players compete to conquer an island of Middle Earth for
Sauron. The winner of a match is the one that gets the highest score at the end.

The map of the island is represented with a (randomly generated) square board.
The cells on this board can be of different types: WATER, GRASS, FOREST, SAND,
CITY or PATH. Being an island, the board is surrounded with WATER. Moreover,
cells of type CITY are grouped into rectangles representing cities, hence the
name. Similarly, cells of type PATH are grouped into sequences that form paths.
Paths connect different cities and never cross each other.

In order to conquer the island, each player runs an army of ork soldiers. At
each round of the match, players command their orks. Any player that tries
to give more than 1000 instructions in the same round will be aborted. An ork
can be instructed to remain still or move one cell towards the north, south, east
or west direction. If an ork receives more than one instruction, all but the first
one are ignored. Orks cannot move to cells with WATER (since otherwise they
would lose the layer of dirt on their skin). On the other hand, they can move
to all other cells. However, when an ork moves, its health (an integer value)
decreases. Depending on the type of cell where an ork goes, this decrement
in health may be different. When an ork reaches a negative health, it dies and
regenerates under the control of the same player. Initially all orks have the
same health, and when they regenerate they get this same amount of health
again.

Each cell of the board can be occupied by a single ork at most. In the particular
situation that an ork A attempts to move to a cell where there is already an-

1



other ork B (who has moved there previously in the same round, or was there
earlier), the following cases are considered:

• If A and B belong to the same player, the instruction is ignored.

• Otherwise there is a fight, after which one of the two orks will die. If the
health of A (after the decrement due to the movement) is strictly greater
than the health of B, then B dies. Symmetrically, if it is strictly less than
the health of B, then A dies. If there is a tie, then the ork that dies is de-
cided randomly with uniform probability, that is, 50%. The ork that dies
regenerates under the control of the other player with the initial amount
of health. The winner of the fight keeps the same amount of health.

When an ork dies, it regenerates at the next round on a random position on the
shore of the island, that is, on a cell adjacent to the sea which is not WATER, CITY
or PATH. Similarly, initially all players have their orks randomly distributed on
the shore.

At the beginning of a match all cities and paths are empty, i.e., do not have
any orks on their cells. However, once the game starts, orks can move to them.
Points are then computed as follows. At the end of a round, for each city the
number of orks of each player on its cells is counted. If there is a player who
has strictly more orks on the city than any other player, then this player conquers
the city; in case of a tie, the conqueror of the city (if any) does not change from
the previous round. In any case, for each city currently conquered by a player
(i.e., currently under their control), this player accumulates a number of points
which is bonus per city cell () × the size of the city (that is, the number of its
cells); for paths the same applies as for cities, but the number of accumulated
points is bonus per path cell () × the size of the path. Finally, for each player,
their graph of conquests is considered. In this graph, the vertices are the con-
quered cities, and the edges are the conquered paths that connect conquered
cities. For each connected component of the graph with i vertices, additional
factor connected component () ×2i points are obtained.

Let us illustrate with an example how the score is computed. Figure 1 shows
a screenshot of the game. Blue represents WATER, light green represents GRASS,
deep green represents FOREST, light yellow represents SAND, deep grey repre-
sents CITY and light grey represents PATH. The orks of a player are identified
with small squares of the same color. Conquered cities and paths are filled with
a crossed grid of the color of the player that conquered them.

Let us now count the score of the red player accumulated in the current round:

• Cities: The red player has conquered cities (from top to bottom) with
dimensions 5 × 2, 6 × 5, 2 × 4, 4 × 2, 3 × 2, 2 × 5, 5 × 5 and 5 × 2. In
total, (5 × 2 + 6 × 5 + 2 × 4 + 4 × 2 + 3 × 2 + 2 × 5 + 5 × 5 + 5 × 2) ×
bonus per city cell() = 107 points if bonus per city cell() = 1.

• Paths: The red player has conquered paths (from top to bottom) with
sizes 11, 3, 38 and 18. In total, (11+ 3+ 38+ 18)× bonus per path cell() =

2



Figure 1: Screenshot of the game.

3



70 points if bonus per path cell() = 1.

• Graph of conquests: The graph of the red player has five connected
components: one with 3 cities, another one with 2 cities, and three com-
ponents consisting of an isolated vertex. In total, (23 + 22 + 3 × 21) ×
factor connected component() = 36 points if bonus per city cell() = 2.

Thus, in total the red player has accumulated 213 points in this round.

In general, the execution of a round follows the next steps:

1. All instructions of all players are registered according to the above rules.

2. The instructions are selected randomly and executed (if valid).

3. Dead orks are regenerated.

4. For each player, the points obtained at the end of the round are computed
and added to the score.

1.1 Game parameters

A game is defined by a board and the following set of parameters, whose de-
fault values are shown in parentheses:

• nb players(): number of players (4)
• rows(): number of rows of the board (70)
• columns(): number of columns of the board (70)
• nb rounds(): number of rounds of the match (200)
• initial health(): initial health of each ork (100)
• nb orks(): number of orks each player controls initially (15)
• cost grass(): cost in health of moving to a cell of type GRASS (1)
• cost forest(): cost in health of moving to a cell of type FOREST (2)
• cost sand(): cost in health of moving to a cell of type SAND (3)
• cost city(): cost in health of moving to a cell of type CITY (0)
• cost path(): cost in health of moving to a cell of type PATH (0)
• bonus per city cell(): bonus in points for each cell in a conquered city (1)
• bonus per path cell(): bonus in points for each cell in a conquered path (1)
• factor connected component(): factor multiplying the size of connected com-

ponents (2)

Unless there is a force majeure event, these are the values of parameters that
will be used in the game.

4



2 Programming

The first thing you should do is to download the source code. This source code
includes a C++ program that runs the matches and also an HTML viewer to
watch them in a nice animated format. Also, a “Null” player and a “Demo”
player are provided to make it easier to start coding your own player.

2.1 Running your first match

Here we will explain how to run the game under Linux, but a similar procedure
should work as well under Windows, Mac, FreeBSD, OpenSolaris, . . . The only
requirements on your system are g++, make and a modern browser like Mozilla
Firefox or Google Chrome.

To run your first match, follow the next steps:

1. Open a console and cd to the directory where you extracted the source
code.

2. Run

make all

to build the game and all the players. Note that Makefile identifies any
file matching AI*.cc as a player.

3. This creates an executable file called Game. This executable allows you to
run a match using a command like:

./Game Demo Demo Demo Demo -s 30 -i default.cnf -o default.out

In this case, this runs a match with random seed 30 where four instances
of the player “Demo” play with the parameters defined in default.cnf

(the default parameters). The output of this match is redirected to the file
default.out.

4. To watch a match, open the viewer file viewer.html with your browser
and load the file default.out. Or alternatively use the script viewer.sh,
e.g. viewer.sh default.out.

Use

./Game --help

to see the list of parameters that you can use. Particularly useful is

./Game --list

to show all the registered player names.

If needed, remember that you can run

5



make clean

to delete the executable and object files and start over the build.

2.2 Adding your player

To create a new player with, say, name Sauron, copy AINull.cc (an empty
player that is provided as a template) to a new file AISauron.cc. Then, edit the
new file and change the

#define PLAYER NAME Null

line to

#define PLAYER NAME Sauron

The name you choose for your player must be unique, non-offensive and less
than 12 letters long. It will be used to define a new class PLAYER NAME,
which will be referred to below as your player class. The name will be shown
as well when viewing the matches and on the website.

Now you can start implementing the method play () . This method will be called
every round and is where your player should decide what to do, and do it.
Of course, you can define auxiliary methods and variables inside your player
class, but the entry point of your code will always be this play () method.

From your player class you can also call functions to access the board state, as
defined in the State class in State.hh, and to command your units, as defined
in the Action class in Action.hh. These functions are made available to your
code using multiple inheritance. The documentation on the available functions
can be found in the aforementioned header files. You can also examine the code
of the “Demo” player in AIDemo.cc as an example of how to use these func-
tions. Finally, it may be worth as well to have a look at the files Structs.hh for
useful data structures, Random.hh for random generation utilities, Settings.hh
for looking up the game settings and Player.hh for the me() method.

Note that you should not modify the factory () method from your player class,
nor the last line that adds your player to the list of registered players.

2.3 Playing against the “Dummy” player

To test your strategy against the “Dummy” player, we provide the AIDummy.o

object file. This way you still will not have the source code of our “Dummy”,
but you will be able to add it as a player and compete against it locally.

To add the “Dummy” player to the list of registered players, you will have to
edit the Makefile file and set the variable DUMMY OBJ to the appropriate value.

6



Remember that object files contain binary instructions targeting a specific ma-
chine, so we cannot provide a single, generic file. If you miss an object file for
your architecture, contact us and we will try to supply it.

You can also ask your friends for the object files of their players and add them
to the Makefile by setting the variable EXTRA OBJ.

2.4 Restrictions when submitting your player

Once you think your player is strong enough to enter the competition, you
should submit it to the Jutge.org website (https://www.jutge.org). Since it
will run in a secure environment to prevent cheating, some restrictions apply
to your code:

• All your source code must be in a single file (like AISauron.cc).

• You cannot use global variables (instead, use attributes in your class).

• You are only allowed to use standard libraries like iostream, vector, map,
set, queue, algorithm, cmath, . . . In many cases, you do not even need to
include the corresponding library.

• You cannot open files nor do any other system calls (threads, forks, . . . ).

• When run in the Jutge.org server, your CPU time and memory usage will
be limited. If exceeded (or if your program aborts), your player will not
be allowed to execute more instructions.

• Your program should not write to cout nor read from cin. You can write
debug information to cerr (but remember that doing so in the code you
upload to the server can waste part of your limited CPU time).

• Any submission to Jutge.org must be an honest attempt to play the game.
Any attempt to cheat in any way will be severely penalized.

3 Tips

• Read only the headers of the classes in the provided source code. Do not
worry about the private parts nor the implementation.

• Start with simple strategies, easy to code and debug, since this is exactly
what you will need at the beginning.

• Define basic auxiliary methods, and make sure they work properly.

• Try to keep your code clean. Then it will be easier to change it and add
new strategies.

7



• As usual, compile and test your code often. It is much easier to trace a
bug when you only have changed few lines of code.

• Use cerrs to output debug information and add asserts to make sure the
code is doing what it should do. Remember to remove (or comment out)
the cerrs before uploading your code to Jutge.org, because they make
the execution slower.

• When debugging a player, remove the cerrs you may have in the other
players’ code, so as to only see the messages that you want.

• By using commands like grep in Linux you can filter the output that Game
produces.

• Switch on the DEBUG option in the Makefile, which will allow you to get
useful backtraces when your program crashes. There is also a PROFILE

option you can use for code optimisation.

• If using cerr is not enough to debug your code, learn how to use valgrind,
gdb, ddd or any other debugging tool. They are quite useful!

• You can analyse the files that the program Game produces as output, which
describe how the game evolves after each round.

• Keep a copy of the old versions of your player. When a new version is
ready, make it fight against the previous ones to measure the improve-
ment.

• When running locally, use different random seeds with the -s option of
Game.

• Before competing with your classmates, focus on qualifying and defeat-
ing the “Dummy” player.

• Make sure your program is fast enough: the CPU time you are allowed
to use is rather short.

• Try to figure out the strategies of your competitors by watching matches.
This way you can try to defend against them or even improve them in
your own player.

• DO NOT GIVE YOUR CODE TO ANYBODY. Not even an old version.
We are using plagiarism detectors to compare pairwise all submissions
(including programs from previous competitions). However, you can
share the compiled .o files.

• Do not wait till the last minute to submit your player. When there are lots
of submissions at the same time, it will take longer for the server to run
the matches, and it might be too late!

• You can submit new versions of your program at any time.

8



• And again: Keep your code simple, build often, test often. Or you will
regret.

9


