
Jutge.org
The Virtual Learning Environment for Computer Programming

Cached Collatz P33673 en
Vint-i-tresè Concurs de Programació de la UPC - Final (2025-09-17)

For any positive integer number n, let C(n) be n/2 if n is even, and 3n + 1 if n is odd. The
Collatz Conjecture states that the sequence n, C(n), C(C(n)), . . . leads to 1 for any n.

For example, let n = 17. We get 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 →

4 → 2 → 1, for a total of 12 steps. After that, the cycle 4, 2, 1 would keep repeating.

You want to make some computer analysis about the number of steps to get to 1 on several
starting numbers, and leave the computer running overnight. To speed things up and avoid
recalculation, you plan on storing all already computed numbers in a set. However, you
realize that this would quickly exceed the memory constraints of your computer.

To avoid that, you discover LRU (Least Recently Used) caches, which can be helpful. Here’s
how they work:

• LRU caches have a fixed capacity K. They map at most K keys to their values.

• Whenever a key is checked in the cache, its value will be returned if the key is present.
Otherwise, the value will need to be computed, and then stored in the cache.

• To store a new (key, value) when the cache is already full, the least recently used pair
is evicted. We consider that we “use” a pair whenever we either store or check it.

With the help of this cache, your program will compute S(n) for some initial values n in the
following way:

• S(n) will be computed recursively via the C(n) transformation. However, if n is a
cache hit (the key n exists in the cache), S(n) is returned immediately. Otherwise, it’s
a cache miss, and (n, S(n)) is stored in the cache once S(n) is computed.

• We will never store 1 as a key in the cache, and we can assume S(1) = 0.

For instance, this is the state of the cache for the first case of the sample input. It shows the
(key, value) pairs, ordered from least to most recently used:

- After the 1st step: [] (The cache is empty.)
- After the 2nd step: [(2, 1)]
- After the 3nd step: [(2, 1)]
- After the 4th step: [(2, 1), (4, 2), (8, 3)] (Note that we can conclude S(8) = 3 only after we
know S(4) = 2.)
- After the 5th step: [(16, 4), (32, 5), (64, 6)]
- After the 6th step: [(2, 1), (4, 2), (8, 3)]
- After the 7th step: [(4, 2), (8, 3), (2, 1)]
- After the 8th step: [(2, 1), (8, 3), (16, 4)]

Given K and some starting values n, please print S(n) and the number of cache misses to
compute S(n) with the previous procedure.



Input

Input consists of several cases. Each case starts with K, followed by a non-empty sequence
n1, n2, . . . of positive integers ending with a 0. Assume 1 ≤ K ≤ 104, and that the Collatz
sequence of each given ni will never overflow with the usual 32-bit signed integers.

Output

For each ni, print S(ni), and the number of cache misses found while computing it. Suppose
that the cache is empty at the beginning of each case. Print a line with 10 dashes at the end
of every case.

Sample input

3 1 2 2 8 64 8 2 16 0

50 15 7 85 18 92 0

Sample output

1: 0 0

2: 1 1

2: 1 0

8: 3 2

64: 6 3

8: 3 3

2: 1 0

16: 4 1

----------

15: 17 17

7: 16 8

85: 9 5

18: 20 4

92: 17 1

----------

Problem information

Author : Vı́ctor Chabrera
Generation : 2025-09-15 23:22:10

© Jutge.org, 2006–2025.
https://jutge.org


