
Treap ambiguity

P30477_en

Roughly speaking, a treap is a BST (a binary search tree) and also a heap. Assume that we have n different keys, and a fixed integer m . Every key is independently associated with a priority (a random integer chosen uniformly from the interval $[1, m]$). Let x be the key with the largest priority. Then, the treap for the set of pairs (key, priority) is the BST with x at its root, the treap for the pairs with keys smaller than x as its left subtree, and the treap for the pairs with keys larger than x as its right subtree.

For instance, suppose that the keys are $\{40, 41, 42, 49, 70, 80\}$ and $m = 1000$. Then, the pairs (key, priority) could be $(40, 189)$, $(41, 350)$, $(42, 960)$, $(49, 234)$, $(70, 800)$ and $(80, 780)$. In this case, we would have the treap to the left:

If we only look at the keys (in blue), we have a BST. If we only look at the priorities (in red), we have a sort of a heap (the largest at the top; the same property holds recursively).

This definition is usually good enough in many practical situations. However, there is a caveat: With repeated priorities, we can have more than one possible treap. For example, the second and the third treaps above are possible for the pairs $(3, 42)$ and $(5, 42)$.

Note that we can have a unique treap with repeated priorities. Consider for instance the pairs $(2, 23)$, $(3, 42)$ and $(5, 23)$. The only possible treap is the fourth above.

Given n and m , what is the probability that the treap is unique?

Input

Input consists of several cases, each with n and m . Assume $1 \leq n \leq 50$ and $2 \leq m \leq 5000$.

Output

For every case, print the probability that the treap is unique with four digits after the decimal point. The input cases have no precision issues.

Sample input 1

```
1 100
2 2
3 3
50 5000
```

Sample output 1

```
1.0000
0.5000
0.3333
0.9656
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T10:09:32.326Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>