You have to program several functions. Do not use the math module.

1. Write an integer function \(\text{int_root}(n) \) that given a natural number \(n \) returns \(\lfloor \sqrt{n} \rfloor \).

2. Write a function \(\text{int_log}(a, b) \) that given natural numbers \(a \) greater than one and \(b \) greater than zero returns natural \(k \) such that \(a^k \leq b < a^{k+1} \).

3. Write a function \(\text{gcd lcm}(a, b) \) that given natural numbers \(a \) and \(b \) such that \(a \neq 0 \) or \(b \neq 0 \) returns the greatest common divisor and the least common multiple. Your code has to implement the Euclid’s algorithm.

4. Write a boolean function \(\text{is_prime}(n) \) that given a natural number \(n \) returns \text{True} if and only if \(n \) is prime.

5. In order to play table games at the casino you need some tokens. Red tokens cost 7 euros and yellow tokens cost 4. Write a function \(\text{buy_tokens}(n) \) that given a number \(n \) of euros such that \(n \geq 20 \), it returns the equivalence in tokens. When several equivalences are possible the function returns the one minimizing the total number of tokens.

6. Write a string function \(\text{max_overlap}(s, t) \) that given two strings \(s \) and \(t \) returns the longest string that is a common prefix of \(s \) and \(t \).

Scoring

The first function counts 15 points. Other ones count 17 point each one.

Sample session

```python
>>> int_root(19)
4
>>> int_log(3, 20)
2
>>> gcd_lcm(12,18)
(6, 36)
>>> is_prime(51)
False
>>> buy_tokens(50)
(6, 2)
>>> max_overlap('bugs', 'bunny')
'bu'
```