

Building a wall**P27780_en**

Let us use right trapezoids to build a wall. Each trapezoid is defined by four real parameters ℓ, r, y_ℓ and y_r , which indicate the points $(\ell, 0)$, (ℓ, y_ℓ) , (r, y_r) , and $(r, 0)$. For instance, adding the trapezoids $(1\ 5\ 1\ 3)$ and $(7\ 11\ 1\ 3)$ into an empty wall produces the figure to the left:

5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11

5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11

The material of the trapezoids is semifluid, so they adapt to the shape underneath. For instance, adding $(3\ 9\ 3\ 0)$ to the figure to the left produces the figure to the right. Write a program to keep track of the shape of an initially empty wall, with two kind of operations:

- 'A' ℓ r y_ℓ y_r , to add a trapezoid as already explained.
- 'C' x , to consult the current height of the wall at the abscissa x .

Input

Input consists of several cases, each one with the number of operations n , followed by those operations. Assume $1 \leq n \leq 10^5$, that all given parameters are real numbers between 0 and 10^4 , $\ell < r$, and that every x is different to all previous ℓ and r .

Output

For every 'C' operation, print the height at x with three digits after the decimal point. The input cases do not have precision issues.

Sample input 1

```
8
A 1 5 1 3
C 3
A 7 11 1 3
C 10
A 3 9 3 0
C 4
C 6.5
C 1000

3
A 0 10000 0 10000
A 1.2 3.4 100.7 23.42
C 2.789

1
C 10
```

Sample output 1

```
2.000
2.500
5.000
1.250
0.000
47.672
0.000
```

Problem information

Author: Salvador Roura

Generation: 2026-01-25T10:33:18.241Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>