Jutge.org

The Virtual Learning Environment for Computer Programming

Weighted shortest path (3)

P25235_en
Write a program that, given a directed graph with positive costs at the arcs, and two vertices x and y, computes the minimum cost to go from x to y, and the minimum number of steps of all the paths that go from x to y with such minimum cost.

Input

Input consists of several cases. Every case begins with the number of vertices n and the number of arcs m. Follow m triples u, v, c, indicating that there is an arc $u \rightarrow v$ of cost c, where $u \neq v$ and $1 \leq c \leq 10^{4}$. Finally, we have x and y. Assume $1 \leq n \leq 10^{4}, 0 \leq m \leq 5 n$, and that for every pair of vertices u and v there is at most one arc of the kind $u \rightarrow v$. All numbers are integers. Vertices are numbered from 0 to $n-1$.
The condition for c was previously $c \leq 1000$. It was updated to create new test cases.

Output

For every case, print the minimum cost to go from x to y, and the minimum number of steps to achieve this cost. If there is no path from x to y, state so.

Sample input

```
10
0 6
515
4 3
1 8
0 20
5
2 1
110
1 2
34
5
1
11000
0
3
2100
140
260
0
```


Problem information

Author : Salvador Roura
Generation : 2022-11-19 11:44:21
© Jutge.org, 2006-2022.
https://jutge.org

