
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Parcial 2019-11-06 P24239_es

1. Números romanos (con recursividad)
Define una función roman2int :: String → Int que convierta un número romano en su entero
equivalente usando recursividad.
Recuerda que los números romanos se escriben con los símbolos I, V, X, L, C, D y M, con val-
ores 1, 5, 10, 50, 100, 500 y 1000 respectivamente. En este sistema, para obtener el número rep-
resentado, se suman los valores de los símbolos, excepto los símbolos situados a la izquierda
de un símbolo de valor mayor, que se restan.

2. Números romanos (sin recursividad)
Define una función roman2int' :: String → Int que hace lomismo que la función anterior pero
sin usar recursividad: usa una o más funciones de orden superior.

3. Raíces
La serie de Taylor para calcular √𝑥 es:

𝑓1(𝑥) = 𝑥

𝑓𝑛(𝑥) = 1
2 (𝑓𝑛−1(𝑥) + 𝑥

𝑓𝑛−1(𝑥))

Define una función arrels :: Float → [Float] que, dado un real 𝑥, retorna la lista infinita de los
términos del desarrollo de Taylor de √𝑥.

4. Más raíces
Escribe una función arrel :: Float → Float → Float que a partir de una 𝑥 y un 𝜖, aproxime la
raíz de 𝑥 con un error inferior o igual a 𝜖 utilizando la lista infinita anterior. El error en el
término 𝑡𝑖 de la serie (con 𝑖 > 1) es la diferencia en valor absoluto entre 𝑡𝑖 y 𝑡𝑖−1.

5. Escritura de árboles
Considera el siguiente tipo genérico LTree a de árboles binarios con valores en las hojas:

data LTree a = Leaf a Node (LTree a) (LTree a)|
Haz que los árboles sean (“instance”) de la clase Show visualizándolos según los ejemplos.



6. Creación de árboles equilibrados
Haz una función build :: [a] → LTree a que, dada una lista no vacía, construye el LTree equili-
brado (a la izquierda) que contiene los elementos de la lista en elmismo orden de izquierda a
derecha. Decimos que un árbol está equilibrado a la izquierda si todos los subárboles tienen
el hijo izquierdo con la misma profundidad que el hijo derecho o la misma más 1.

7. Mónadas y árboles
Define una función zipLTrees :: LTree a → LTree b → Maybe (LTree (a,b)) que combine los val-
ores de las hojas de dos árboles con la misma estructura.
Si las estructuras de los dos árboles no encajan, retorna Nothing y, si encajan, retorna Just
del árbol que tiene en cada hoja el par con el primer elemento del primer árbol y el segundo
del segundo árbol en la misma posición.
Utiliza la notación do.

Ejemplo de entrada 1
roman2int "I"
roman2int "IV"
roman2int "MCCCXIX"
roman2int "MMXVIII"

Ejemplo de salida 1
1
4
1319
2018

Ejemplo de entrada 2
roman2int' "I"
roman2int' "IV"
roman2int' "MCCCXIX"
roman2int' "MMXVIII"

Ejemplo de salida 2
1
4
1319
2018

Ejemplo de entrada 3
take 10 $ arrels 4.0
take 10 $ arrels 100.0

Ejemplo de salida 3
[4.0,2.5,2.05,2.0006099,2.0,2.0,2.0,2.0,2.0,2.0]
[100.0,50.5,26.240099,15.02553,10.840435,10.032578,10.000053,10.0,10.0,10.0]



Ejemplo de entrada 4
arrel 4.0 0.00001
arrel 100.0 0.1

Ejemplo de salida 4
2.0
10.000053

Ejemplo de entrada 5
Node (Leaf 3) (Node (Leaf 8) (Leaf 7))
Node (Leaf 1) (Node (Node (Leaf 3) (Leaf 4)) (Node (Leaf 8) (Leaf 7)))
Node (Leaf "Albert") (Node (Leaf "Gerard") (Leaf "Jordi"))
Leaf 'x'

Ejemplo de salida 5
<{3},<{8},{7}>>
<{1},<<{3},{4}>,<{8},{7}>>>
<{"Albert"},<{"Gerard"},{"Jordi"}>>
{'x'}

Ejemplo de entrada 6
build [3, 2, 5]
build [3, 2, 8, 5, 1]
build ['a', 'b', 'c', 'd']
build [[1, 2, 3]]

Ejemplo de salida 6
<<{3},{2}>,{5}>
<<<{3},{2}>,{8}>,<{5},{1}>>
<<{'a'},{'b'}>,<{'c'},{'d'}>>
{[1,2,3]}

Ejemplo de entrada 7
let t1 = Node (Leaf "a") (Node (Leaf "b") (Leaf "c"))
let t2 = Node (Leaf 0) (Node (Leaf 1) (Leaf 2))
let t3 = Node (Node (Leaf 1) (Leaf 2)) (Leaf 0)
zipLTrees t1 t2
zipLTrees t1 t3

Ejemplo de salida 7
Just <{("a",0)},<{("b",1)},{("c",2)}>>
Nothing

Información del problema
Autoría: Jordi Petit, Albert Rubio, Gerard Escudero
Traducción: Albert Rubio

Generación: 2026-02-03T17:06:35.926Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

