Jutge.org

The Virtual Learning Environment for Computer Programming

Haskell — Unfoldr P23089 ca

El modul Data.List de Haskell ofereix una funcié unfoldr :: (b —» Maybe (a,b)) —» b — [a]
que és un dual de foldr. Aquesta és la seva documentacio:

While foldr reduces a list to a summary value, unfoldr builds a list from a seed value. The
function takes the element and returns Nothing if it is done producing the list or returns
Just (m, n), in which case, m is prepended to the list and 7 is used as the next element in a
recursive call.

1. Definiu recursivament una funcié myUnfoldr :: (b - Maybe (a, b)) — b — [a] que fun-
cioni com unfoldr.

Si no us en sortiu, podeu fer la resta dels apartats fent myUnfoldr = unfoldr i incloent
un import Data.List (unfoldr) al principi del programa.

2. Definiu, utilitzant myUnfoldr, una funcié myReplicate :: a — Int — [a] de manera que
myReplicate x n retorni una llista amb n cops el valor x.

3. Definiu, utilitzant myUnfoldr, una funcié mylterate :: (a — a) — a — [a] que funcioni com
iterate.

4. Definiu, utilitzant myUnfoldr, una funcié myMap :: (a - b) — [a] — [b] que funcioni
com map

5. Considereu la definicié segiient del tipus Bst per arbres binaris de cerca, juntament
amb una funcié add que hi afegeix valors:

data Bst a = Empty | Node a (Bst a) (Bst a) deriving Show
add :: Orda = a - (Bsta) — (Bst a)

add x Empty = Node x Empty Empty
add x (Node y I 1)
[x <y = Nodey (add x 1) r
x>y = Node y I (add x 1)
| otherwise = Node y I r

Feu que els arbres binaris de cerca siguin instancia de Show, mostrant-se segons els
exemples.

6. Definiu una funci6 adder :: Ord a = (Bst a, [a]) - Maybe (Bst a, (Bsta, [a])) de man-
era que myUnfoldr adder (t, xs) retorni una llista que mostri, pas a pas, la construc-
cié6 d'un arbre binari de cerca inserint seqiiencialment els valors de xs en t. Vegeu
I'exemple.

El Jutge déna puntuacions parcials, 15 punts per apartat i 10 per 1’exemple ptblic.

Observaci6

A l'hora de corregir es tindra en compte la correccid, senzillesa, elegancia i eficiencia de la
soluci6 proposada.

Exemple d’entrada 1

myUnfoldr (\x -> if x == 0 then Nothing else Just (x, x — 1))

myReplicate 7 4

myReplicate '*' 4

take 8 $ myIterate (*2) 1

take 4 $ mylIterate ('*' :) ""

myMap (*2) [1..10]

take 4 $ myMap even [1..]

show (Empty :: Bst Int)

show $ add 30 Empty

show $ add 20 $ add 10 $ add 50 $ add 30 Empty
myUnfoldr adder (Empty, [3, 1, 4, 5])

Exemple de sortida 1

[5,4,3,2,1]

[7,7,7,7]

%k % %% Il
1,2,4,8,16,32,64,128]

Nk mkxn IV***II]
! ’ !

[
[
[2,4,6,8,10,12,14,16,18,20]
[False, True, False, True]

"(30 .)"
"(30 (10 . (20 . .)) (50 . .))"
[(3 .), (L.)), (1. (4. .)), (3 (1 .. (4

Informacié del problema

Autoria: Jordi Petit
Generacié: 2026-02-03T17:10:28.188Z

© Jutge.org, 2006-2026.
https://jutge.org

https://jutge.org

