
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Unfoldr P23089_ca

El mòdul Data.List de Haskell ofereix una funció unfoldr :: (b → Maybe (a, b)) → b → [a]
que és un dual de foldr. Aquesta és la seva documentació:
While foldr reduces a list to a summary value, unfoldr builds a list from a seed value. The
function takes the element and returns Nothing if it is done producing the list or returns
Just (m, n), in which case, m is prepended to the list and n is used as the next element in a
recursive call.

1. Definiu recursivament una funció myUnfoldr :: (b → Maybe (a, b)) → b → [a] que fun-
cioni com unfoldr.
Si no us en sortiu, podeu fer la resta dels apartats fent myUnfoldr = unfoldr i incloent
un import Data.List (unfoldr) al principi del programa.

2. Definiu, utilitzant myUnfoldr, una funció myReplicate :: a → Int → [a] de manera que
myReplicate x n retorni una llista amb n cops el valor x.

3. Definiu, utilitzantmyUnfoldr, una funciómyIterate :: (a → a) → a → [a] que funcioni com
iterate.

4. Definiu, utilitzant myUnfoldr, una funció myMap :: (a → b) → [a] → [b] que funcioni
commap

5. Considereu la definició següent del tipus Bst per arbres binaris de cerca, juntament
amb una funció add que hi afegeix valors:
data Bst a = Empty | Node a (Bst a) (Bst a) deriving Show

add :: Ord a ⇒ a → (Bst a) → (Bst a)

add x Empty = Node x Empty Empty
add x (Node y l r)

| x < y = Node y (add x l) r
| x > y = Node y l (add x r)
| otherwise = Node y l r

Feu que els arbres binaris de cerca siguin instància de Show, mostrant-se segons els
exemples.

6. Definiu una funció adder :: Ord a ⇒ (Bst a, [a]) → Maybe (Bst a, (Bst a, [a])) de man-
era que myUnfoldr adder (t, xs) retorni una llista que mostri, pas a pas, la construc-
ció d’un arbre binari de cerca inserint seqüencialment els valors de xs en t. Vegeu
l’exemple.

El Jutge dóna puntuacions parcials, 15 punts per apartat i 10 per l’exemple públic.

Observació
A l’hora de corregir es tindrà en compte la correcció, senzillesa, elegància i eficiència de la
solució proposada.

Exemple d’entrada 1
myUnfoldr (\x -> if x == 0 then Nothing else Just (x, x - 1)) 5
myReplicate 7 4
myReplicate '*' 4
take 8 $ myIterate (*2) 1
take 4 $ myIterate ('*' :) ""
myMap (*2) [1..10]
take 4 $ myMap even [1..]
show (Empty :: Bst Int)
show $ add 30 Empty
show $ add 20 $ add 10 $ add 50 $ add 30 Empty
myUnfoldr adder (Empty, [3, 1, 4, 5])

Exemple de sortida 1
[5,4,3,2,1]
[7,7,7,7]
"****"
[1,2,4,8,16,32,64,128]
["","*","**","***"]
[2,4,6,8,10,12,14,16,18,20]
[False,True,False,True]
"."
"(30 . .)"
"(30 (10 . (20 . .)) (50 . .))"
[(3 . .),(3 (1 . .) .),(3 (1 . .) (4 . .)),(3 (1 . .) (4 . (5 . .)))]

Informació del problema
Autoria: Jordi Petit

Generació: 2026-02-03T17:10:28.188Z

© Jutge.org, 2006–2026.
https://jutge.org

https://jutge.org

