
Generalized chess knight**P22796_en**

Let us define an (a, b) knight as a piece that moves by jumping a cells in one direction and b cells in the other direction, where the possible directions are horizontal and vertical. For instance, the traditional chess knight is a $(1, 2)$ knight.

Given an $n \times m$ board with obstacles, an initial position (i_1, j_1) , a final position (i_2, j_2) , and the pair (a, b) , can you tell if an (a, b) knight initially located at (i_1, j_1) can reach (i_2, j_2) in two or less steps? The knight can never leave the board, nor visit any obstacles.

Input

Input consists of several cases, each with n and m , followed by the board (n lines with m characters each, where an 'x' indicates an obstacle and a '.' indicates a free cell), followed by i_1 , j_1 , i_2 , j_2 , a and b . Assume that n and m are between 1 and 42, that (i_1, j_1) and (i_2, j_2) are free positions inside the board, and $1 \leq a < b \leq 5$. The upper-left position is $(0, 0)$.

Output

For every case, print "yes" or "no" depending on whether the goal position is reachable from the initial position in two or less steps.

Sample input 1

```
2 3
...
...
0 0 1 2 1 2

4 5
.....
XXXXX
XXXXX
.....
0 1 3 0 1 3

5 5
.XXX.
XXXXX
XXXXX
XXXXX
XX.XX
0 4 0 0 2 4

5 5
.XXX.
XXXXX
XXXXX
XXXXX
XXXXX
0 4 0 0 2 4

1 8
XXXXXXXX.
0 7 0 7 3 5
```

Sample output 1

```
yes
yes
yes
no
yes
```

Problem information

Author: Enric Cusell

Generation: 2026-01-25T10:16:36.994Z

© *Jutge.org*, 2006–2026.

<https://jutge.org>