Write a program to compute the transitive closure of a directed graph with \(n \) vertices. That is, you must compute an \(n \times n \) matrix where at the \(j \)-th column of the \(i \)-th row there is a 1 if it is possible to go from \(i \) to \(j \), and there is a 0 otherwise.

Input

Input consists of several cases. Every case begins with \(n \) followed by the number of arcs \(m \). Follow \(m \) pairs \(x \ y \) to indicate an arc from \(x \) to \(y \), with \(x \neq y \). Assume \(1 \leq n \leq 200 \), that the vertices are numbered between 0 and \(n - 1 \), and that there are no repeated arcs.

Output

For every graph, print its transitive closure, followed by a line with 20 dashes.

Observation

In the “large” private test cases, we have \(m = \Theta(n^2) \).

Sample input

\[
\begin{array}{c}
2 1 \\
0 1 \\
1 0 \\
4 5 \\
1 0 2 3 3 1 2 1 3 0
\end{array}
\]

Sample output

\[
\begin{array}{c}
1 1 \\
0 1 \\
1 \\
1 0 0 \\
1 1 0 0 \\
1 1 1 1 \\
1 1 0 1
\end{array}
\]