Jutge.org

The Virtual Learning Environment for Computer Programming

Optimal Matrix Multiplication

P11455_en
Examen parcial d'Algorísmia, FME (2012-11-13)
Given two matrices with dimensions $n_{1} \times n_{2}$ and $n_{2} \times n_{3}$, the cost of the usual multiplication algorithm is $\Theta\left(n_{1} n_{2} n_{3}\right)$. For simplicity, let us consider that the cost is exactly $n_{1} n_{2} n_{3}$.
Suppose that we must compute $M_{1} \times \cdots \times M_{m}$, where every M_{i} is an $n_{i} \times n_{i+1}$ matrix. Since the product of matrices is associative, we can choose the multiplication order. For example, to compute $M_{1} \times M_{2} \times M_{3} \times M_{4}$, we could either choose $\left(M_{1} \times M_{2}\right) \times\left(M_{3} \times M_{4}\right)$, with cost $n_{1} n_{2} n_{3}+n_{3} n_{4} n_{5}+n_{1} n_{3} n_{5}$, or either choose $M_{1} \times\left(\left(M_{2} \times M_{3}\right) \times M_{4}\right)$, with cost $n_{2} n_{3} n_{4}+n_{2} n_{4} n_{5}+n_{1} n_{2} n_{5}$, or three other possible orders.
Write a program to find the minimum cost of computing $M_{1} \times \cdots \times M_{m}$.

Input

Input consists of several cases, each one with m followed by the $m+1$ dimensions. Assume $2 \leq m \leq 100$ and $1 \leq n_{i} \leq 10^{4}$.

Output

For every case, print the minimum cost to compute the product of the m matrices.

Sample input

```
2}1212
3}1010\quad20\quad30\quad4
10 9000 4000 3500 8000 2000 7500 6000 1000 8500 5500 7000
```


Sample output

6
18000
302250000000

Problem information

Author: Salvador Roura
Translator: Salvador Roura
Generation : 2014-08-29 16:07:08
© Jutge.org, 2006-2014.
http://www.jutge.org

