Bola de Drac 2015

Jordi Petit Enric Rodriguez Salvador Roura
27 de gener de 2026

1 Regles del joc

Aquest joc s’inspira en la mitica seérie de dibuixos animats Bola de Drac (vegeu
per exemple http://ca.wikipedia.org/wiki/Bola_de_Drac).

Cada jugador controla un personatge anomenat goku, el protagonista de
la serie. Els gokus es mouen en un tauler rectangular que conté un laberint.
L’objectiu d’un goku és agafar boles de drac i seguidament dipositar-les en
alguna de les capsules Hoi Poi que hi ha repartides per tauler. Cada goku
només pot dur a sobre una bola de drac com a molt en cada moment. El
nombre de boles de drac que hi ha al tauler és sempre el mateix, comptant tant
les que duu algun goku com les que encara estan lliures. Quan una bola de drac
és dipositada en alguna capsula Hoi Poi, immediatament n’apareix una altra en
una casella aleatoria del tauler.

Els gokus poden combatre entre ells, i d’aquesta manera prendre la bola de
drac que duu un altre. Els combats tenen lloc quan dos gokus coincideixen en
una casella, i el seu resultat depén de la forca de cadascun dels combatents.
Una altra manera d’impedir que un altre goku dipositi la bola de drac que duu
és llancant un raig Kame Hame que 1’elimini.

A part de boles de drac i capsules Hoi Poi, a les caselles del tauler poden
haver-hi també mongetes magiques, que permeten recuperar la forca perduda,
i navols Kinton, sobre els quals els gokus es mouen el doble de rapid i sense
cansar-se.

Quan el joc acaba, és a dir, s’han realitzat totes les rondes, el jugador que ha
dipositat més boles de drac guanya la partida. En cas d’empat, guanya aquell
que conservi més forca.

A continuacié es donen les regles del joc amb més detall:

o Els segiients parametres configuren una partida:

— nb_ players(): Nombre de jugadors.

— nb_rounds(): Nombre de rondes de la partida.
— rows(): Nombre de files del tauler.

— cols(): Nombre de columnes del tauler.

— nb__capsules(): Nombre de capsules Hoi Poi.

— nb_ balls(): Nombre de boles de drac.

— nb_beans(): Nombre de mongetes magiques.

— nb_ kintons(): Nombre de nivols Kinton.

— max_ strength(): For¢a maxima dels gokus.

— res_strength(): Forca dels gokus després de ressuscitar.

— moving_ penalty(): Penalitzaci6é de forga per moure’s.

— kamehame_ penalty(): Penalitzaci6 de forca per llancar un raig Kame
Hame.

— combat_ penalty(): Penalitzaci6 de forca per combatre.

— goku_regen_ time(): Temps de regeneraci6 per als gokus.

— bean_regen_ time(): Temps de regeneraci6 per a les mongetes.

— kinton_ regen_ time(): Temps de regeneracié per als nivols Kinton.

— kinton_life_ time(): Temps de vida dels nivols Kinton.

o Els diferents tipus de casella son:

— Empty: Casella buida.

— Rock: Una roca.

— Capsule: Una capsula Hoi Poi.
— Ball: Una bola de drac.

— Kinton: Un nivol Kinton.

— Bean: Una mongeta magica.

El tauler sempre estara tot rodejat de roques.

o Cada casella pot rebre la visita d’un (i només un) goku. Els gokus poden
trobar-se en un d’aquests estats:

— Normal: Un goku normal.

— On_ Kinton: Un goku muntat sobre un nivol Kinton.

— With_ Ball: Un goku amb una bola de drac.

— On_ Kinton_ With_ Ball: Un goku muntat sobre un nivol Kinton
amb una bola de drac.

Cada goku pertany a un jugador i pot estar viu o eliminat temporalment.

o Inicialment tots els gokus es troben al maxim nivell de for¢a max__strength()
i els marcadors de boles dipositades estan a zero.

e A cada ronda, cada jugador pot demanar una accid, és a dir, pot triar
—independentment dels altres jugadors— que vol que faci el seu goku:
moure’s cap a una casella adjacent seguint una direccid, o llancar un raig
Kame Hame cap a una direccié (pero no les dues coses alhoral). Els gokus
sense nuvol Kinton només poden realitzar accions en les rondes parells.
Per contra, un goku muntat sobre un nivol Kinton pot moure’s o llangar
rajos Kame Hame en totes les rondes. La primera ronda és la ronda 0.

Les direccions possibles sén cap amunt, cap avall, cap a la dreta o cap a
I'esquerra. Els gokus no es poden moure a les caselles on hi ha roques.

En cas de demanar diverses accions a un goku, només es considerara la
primera. Per altra banda, les accions il - legals seran ignorades. Aixi doncs,
pot ser que no totes les accions demanades siguin finalment concedides.

Per tal que un goku agafi una bola de drac, només cal que passi per una
casella amb bola de drac. Si un goku amb bola de drac passa per una
casella amb una altra bola de drac, no passa res: el goku continua amb la
seva bola i I’altra bola queda a la casella.

Per tal que un goku amb una bola de drac la dipositi, només cal que passi
per una de les nb_ capsules() caselles amb capsula Hoi Poi. Si un goku
sense bola de drac passa per una casella de capsula Hoi Poi, no passa res.

El nombre de boles de drac al tauler és sempre nb_ balls(), comptant tant
les que duu algun goku com les que encara estan lliures. Quan una bola
de drac és dipositada, immediatament n’apareix una altra en una casella
aleatoria del tauler.

Repartides pel tauler hi ha nb_beans() mongetes magiques. Quan un
goku passa per una casella que conté una mongeta magica, la consumeix
i aixi restitueix la seva forca al valor maxim inicial.

Una vegada consumida, la mongeta magica torna a apareixer a la mateixa
casella a partir d’'un minim de bean_regen_ time() rondes, quan no hi ha
cap goku a la casella.

Repartits pel tauler hi ha nb_ kintons() ntvols Kinton. Quan un goku pas-
sa per una casella que conté un niivol Kinton aleshores s’hi puja. Passades
kinton_life_ time() rondes, el nivol Kinton desapareix i el goku torna a
ser normal.

Si en passar per una casella de nivol Kinton el goku ja estava muntant
un nuvol Kinton, aleshores la vida del ntvol del goku s’incrementa en
kinton_life_ time() rondes, i el nivol de la casella desapareix.

Una vegada consumit, el nivol Kinton torna a aparéixer a la mateixa
casella a partir de kinton_ regen_ time() rondes, quan no hi ha cap goku
a la casella.

En una casella no pot haver-hi dos gokus alhora. Quan un goku es mou a
una casella on ja hi ha un altre goku, ja sigui perque aquest segon encara
no s’ha mogut o bé perque s’hi acaba de moure, té lloc un combat. En un
combat entre els gokus A i B, la probabilitat que A en sigui el vencedor
* 1+ fora(A)

2 + fora(A) + fora(B)

. El vencedor del combat es queda a la casella i la seva forga després de
luitar és

max (0, fora — combat _penalty())

. El perdedor queda eliminat (i la seva forga passa a ser 0; aixo és impor-
tant a efectes de puntuacid, vegeu més endavant).

Si el goku vencgut o la casella on s’ha produit el combat tenen bola de
drac, aquesta passa a mans del vencedor. Les boles de drac sobrants (per
exemple, si el vencedor ja té bola de drac) reapareixen en una posicid
aleatoria del tauler.

En cas que el goku vengut estigui muntat sobre un nivol Kinton, aquest
passa a mans del vencedor. Si el vencedor ja esta muntat sobre un nivol
Kinton, aleshores a aquest se li afegeix la vida del nivol del vengut, que
desapareix.

Un raig Kame Hame elimina tot goku que hi hagi en linia recta des de la
posicié on hi ha el goku llancador fins a la propera casella de roca, en la
direcci6 indicada. La forga dels gokus eliminats queda a 0. Les seves boles
de drac reapareixen aleatoriament en una altra casella del tauler. Els seus
nuvols Kinton desapareixen.

Les accions que realitzen els gokus poden consumir forga. Aquest desgast
depén del goku i de I'accio:

— Llangar un raig Kame Hame consumeix kamehame__penalty() unitats
de forca. Si un goku no disposa almenys d’aquesta quantitat de forca,
no pot llangar un raig Kame Hame.

— Si un goku esta muntat sobre un nuvol Kinton, no perd forca quan
es mou. Si no té nuvol Kinton:

* quan la ronda és congruent amb 2 modul 4, el goku només es pot
moure si té almenys moving penalty() unitats de forca, i perd
aquesta quantitat de forca després del moviment;

* quan la ronda no és congruent amb 2 modul 4, no hi ha pena-
litzacié per moviment. Aix0 implica que un goku sense forga i
sense nivol Kinton només es pot moure en una de cada quatre
rondes!

El desgast de forca és independent de si el goku porta bola de drac o no.

Les accions demanades pels jugadors a cada ronda s’executen de la forma
segiient. Inicialment es determina un ordre aleatori dels jugadors. Ales-
hores, seguint aquest ordre, s’executen primer els rajos Kame Hame, i
després es realitzen els moviments (i els combats que en resultin).

Més concretament, el llancament de Kame Hames funciona de la forma
segiient. A cada ronda només es pot llancar un sol Kame Hame. Seguint
Pordre dels jugadors, suposem que el primer jugador que ha demanat un
Kame Hame és A. Si fora(A) < kamehame_penalty(), o és ronda senar
i A no té nivol Kinton, aleshores s’ignora la peticié de A, tal com s’ha

explicat anteriorment. Altrament A té una probabilitat

1+ fora(A) — kamehame _penalty()
1+ max_strength() — kamehame _penalty()

que se li concedeixi el llangament. Es repeteix el procés per cada jugador
seguint l'ordre, fins que es concedeixi un Kame Hame o no hi hagi més
jugadors. Una vegada s’ha concedit un Kame Hame, les peticions de Kame
Hame dels jugadors segiients sén ignorades.

e Al final de cada ronda, s’actualitzen els comptadors de regeneraci6 i de
vida. Aix0 permet que els nuvols Kinton i les mongetes magiques tornin
a apareixer a les seves caselles, i que els ntavols Kinton que han esgotat la
seva vida desapareguin.

Els gokus eliminats també poden ressuscitar. Després de com a minim
goku_ regen_ time() rondes, un goku eliminat torna a aparéixer en estat
normal en una casella aleatoria amb el nivell res_strength() de forca. Els
gokus sempre ressusciten en posicions buides i sense altres gokus al voltant.

e Si en una partida en el Jutge un jugador comet un error d’execucié o
esgota el seu temps de calcul (2 segons per tota la partida), el seu goku
queda congelat, no juga més.

e En acabar totes les rondes de la partida, el ranking dels jugadors es calcula
segons la seva puntuacié, que segueix la férmula:

puntuaci6 = boles - (max_strength() + 1) + fora.
D’aquesta manera, guanya qui més boles de drac hagi dipositat, i en cas

d’empat, el que tingui més forca. Esta permes que el guanyador pugui
tenir el goku congelat.

2 El Visor

A continuacié es mostra una captura de pantalla del visor on apareixen practi-
cament tots els elements del joc:

A la part superior apareixen botons que permeten pausar/reproduir, anar
al principi i al final de la partida, desactivar el mode animacid, o tancar el
visor. Una barra horitzontal indica visualment en quin punt de la partida
es troba la ronda actual. Pitjant 'h’ s’obre una finestra d’ajuda que explica
com els botons del teclat també permeten controlar la reproduccié de la
partida.

A la part esquerra hi ha el marcador. Cada jugador hi apareix amb el
seu nom i color corresponent. El marcador indica la seva puntuacié i, en
Pexecuci6 en el Jutge, el percentatge de CPU consumit (quan el jugador
ha quedat congelat, s’indica amb un ’'OUT’ en color vermell).

Els gokus envoltats per un cercle petit i gruixut porten una bola de drac.
A la captura de pantalla, és el cas del goku blau (que a més estd muntat
sobre un nuvol Kinton).

Els gokus envoltats per un cercle gran i fi acaben de ressuscitar. A la
captura de pantalla, és el cas del goku lila.

A la captura de pantalla, el goku vermell esta llancant un raig Kame
Hame.

Els altres elements que apareixen a la captura de pantalla son els segiients:

&) Bola de drac

Nuvol Kinton

Mongeta magica

Capsula Hoi Poi

3 Programacié

Al problema de Bola de Drac 2015 del Jutge, juntament a aquest enunciat, hi
trobareu el material necessari per programar el joc en C+4. En concret, hi
teniu tots els fitxers de suport, exemples de jugadors, i un visor de partides amb
els quals podreu desenvolupar i provar els vostres jugadors.

Necessitareu g++, make i un navegador recent (Firefox, Chrome, Chromium,
preferiblement un d’aquests dos ultims). El codi del joc és portable a qualsevol
sistema Linux, Mac o Windows, suposant que hi instal - leu les eines adequades.
Els ordinadors de les aules de laboratori ja tenen aquest software instal - lat. Si
voleu treballar amb altres maquines:

e Amb Debian o Ubuntu, amb una instruccié del tipus
sudo apt-get install build-essential chromium-browser
tindreu tot el que us cal.
¢ Amb Mac, en tindreu prou amb instal - lar XCode des de I’App Store.
o Amb Windows, sera suficient instal - lar MinGW (http://mingw.org).

3.1 Com fer un jugador

Per fer un jugador, copieu primer el fitxer AINull.cc a un fitxer AIXXX.cc, on
XXX és un identificador de la vostra eleccié. Trieu un identificador no ofensiu,
que no hagi estat triat ja per un altre estudiant, i compost per, com a molt, 12
lletres, digits i caracters de subratllat; per exemple, SonGoku.

A continuaci6, al fitxer AISonGoku.cc (o com ’hagueu anomenat) que aca-
beu de crear, heu de canviar la linia 11 per posar-hi el nom del vostre jugador
(a 'exemple, #define PLAYER_ NAME SonGoku).

Finalment, heu d’implementar el vostre jugador tot completant la clas-
se PLAYER_NAME que hereta les operacions de consulta del tauler (classe
Board) i de creacié d’accions (classe Action) a través de la classe base Player.
El metode play() es crida a cada ronda per transmetre-us l'estat actual del tau-
ler i recollir les accions del vostre jugador. A la vostra classe hi podeu afegir
camps (variables) per recordar 'estat d’una ronda a l’altra, metodes (funcions)
per descompondre el vostre programa, etc.

Fixeu-vos que la vostra classe ha de contenir una funcié anomenada factory ()
que no heu de modificar, i que després de la classe també hi ha una crida per
registrar el vostre jugador que tampoc heu de modificar.

Podeu prendre com a referéncia el jugador AIDemo.cc que s’adjunta amb el
material de la practica.

3.2 Com executar i veure partides localment

1. Editant el Makefile tal com alla s’indica, podeu incorporar el fitxer AIDummy . o
a la compilacié per a poder usar el jugador Dummy a les vostres partides.
Podeu fer el mateix amb els fitxers .o d’altres jugadors.

2. Executeu make per compilar tots els fitxers que calguin i crear ’executable
Game.

3. Per disputar una partida amb els parametres de joc default.cnf, execu-
teu una comanda com ara

./Game Null SonGoku Demo Demo < default.cnf > default.res

Aqui, el primer jugador sera Null, el segon SonGoku, i els altres dos Demo.
El resultat de la partida quedara a default.res.

4. Visualitzeu la partida obrint el visor (viewer.html) amb el vostre nave-
gador i carregueu el fitxer default.res.

Podeu obtenir la llista completa de parametres del programa Game fent
./Game --help. En particular, ./Game --list us llistara els noms dels ju-
gadors inclosos.

Si us cal, podeu netejar el vostre directori de fitxers executables i fitxers
objectes amb la comanda make clean.

3.3 Restriccions

Els codis dels vostres jugadors han de complir certes condicions:

e Tot el codi s’ha de trobar en un sol fitxer i ha de seguir les indicacions
donades.

o No podeu fer servir variables globals (utilitzeu camps de la vostra classe
PLAYER_NAME).

e Només podeu usar llibreries estandard de C++: vector, map, etc.

o No podeu obrir fitxers, ni fer altres crides al sistema operatiu (systems,
forks, etc.).

e Si us cal, podeu utilitzar cerr, perd no cin ni cout. Compte, escriure
missatges consumeix temps!

e En execucié local, no es controla que els jugadors avortin, que triguin
massa, o que interfereixin amb els contraris. Al Jutge, si.

3.4 Estructures de dades

Per saber com consultar el tauler, feu un cop d’ull al fitxer Board.hh (en particu-
lar, pareu atenci6 a les operacions publiques de la classe Board). Per saber com
sol - licitar les accions, mireu el fitxer Action.hh (en particular, fixeu-vos en les
operacions publiques de la classe Action). Tingueu en compte que només podeu
utilitzar les operacions publiques d’aquestes classes. També us pot resultar ttil
mirar-vos els fitxers Player.hh, PosDir.hh i AIDemo.cc.

4 Consells

Us recomanem seguir els segiients consells:

Estudieu només la part publica de les classes que us proporcionem. No us
preocupeu per les parts privades ni per la implementacio.

Comenceu amb estratégies molt senzilles, que siguin facils de programar i
de depurar, que és exactament alldo que necessiteu al principi. Programeu
procediments basics i tutils, i assegureu-vos que funcionin correctament.

No us arrisqueu a ser eliminats abans que comenci la competicié. Aconse-
guiu que el Jutge us accepti un jugador tan rapidament com sigui possible.
Un jugador acceptat representa tenir assegurada part de la notal

Compileu sovint, testegeu sovint. Ks molt més facil trobar i corregir els
errors quan s’han canviat unes poques linies de codi que quan s’acumulen
molts canvis de cop.

Feu servir cerr’s per posar xivatos, i assert’s per comprovar que el codi fa
el que toca. Pero millor que comenteu el xivatos abans d’enviar el jugador
al Jutge, ja que alenteixen els programes.

Activeu les opcions de debug al Makefile per ajudar-vos a trobar possibles
errors. Les eines valgrind i gdb (o ddd) us poden resultar ttils per
depurar els vostres programes.

Conserveu diverses versions antigues (perd que funcionin correctament)
dels vostres jugadors, i no les toqueu per res.

Per testejar un jugador nou, enfronteu-lo contra uns altres jugadors que no
treguin cap missatge. Aixi només apareixeran per pantalla els missatges
del nou jugador.

Feu competir els vostres jugadors contra rivals diferents, i estudieu les
partides. Encara que no podreu veure els codis dels altres estudiants, si
sou capacos de deduir les seves tactiques i us semblen ttils, podeu mirar
d’imitar-les, defensar-vos-en o millorar-les.

No deixeu el vostre codi a ningt, ni tan sols d’una versi6 antiga. Un
cop feta la competicié s’analitzaran els programes de cada ronda amb
programes detectors de plagi. També es compararan els jugadors d’aquest
curs amb els jugadors de cursos anteriors.

Tingueu en compte que podeu lliurar nous jugadors en qualsevol moment
(excepte durant la fase final).

No espereu fins al darrer moment per enviar els vostres programes. Si
tothom ho fa, la cua del Jutge no déna ’abast.

Finalment, insistim: Feu codis senzills. Compileu sovint, testegeu sovint.
O assumiu-ne les conseqiiencies.

