Jutge.org

The Virtual Learning Environment for Computer Programming

Football rivalry (1)

Novè Concurs de Programació de la UPC - Semifinal (2011-06-29)
Two long-time rival football teams, let us call them B (for beautiful manners) and M (for miserable manners), are playing again. Both teams are exhausted, so the first to score a goal will win the game for sure. At this moment, team B has the ball. If they decide to go all-in, for a direct attack, there is a probability w_{B} that they manage to score, thus winning the game. Hovewer, with probability $1-w_{B}$ they will lose the ball while their goal is unprotected, and therefore they will lose. Team B has another option: to just pass the ball around. In that case, the possesion of the ball will eventually go to team M. Then we will have a simmetrical situation: If team M goes for a direct attack, they will win with probability w_{M}, and they will lose with probability $1-w_{M}$. If they decide to just pass the ball and wait, eventually the possesion of the ball will go back to team B.
Given w_{B} and w_{M}, and assuming that both teams take the best decisions (to attack or not to attack) and that team B has the ball now, which is the probability that team B will win?

Input

Input consists of several cases, each with two real numbers w_{B} and w_{M}, both between 0 and 1 . No given probability is 0.5 . The input cases have no precission issues.

Output

For every case, print the probability that team B will win with four digits after the decimal point. If no goal will be scored, state so.

Sample input

$0.75 \quad 0.42$
00.23
0.30 .60004

Sample output
 0.7500
 NO GOAL
 0.4000

Problem information

Author: Salvador Roura
Generation : 2024-05-03 10:18:31
© Jutge.org, 2006-2024.
https://jutge.org

